Home
Class 12
MATHS
Suppose a(1),a(2),a(3) are in A.P. and b...

Suppose `a_(1),a_(2),a_(3)` are in A.P. and `b_(1),b_(2),b_(3)` are in H.P. and let `Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))|` then prove that

A

`Delta` is independent of `a_(1),a_(2),a_(3)`

B

`a_(1)-Delta,a_(2)-2Delta, a_(3)-3Delta` are in A.P

C

`b_(1)+Delta,b_(2)+Delta^(2),b_(3)+Delta"are in H.P"`

D

`Delta "is independent of "b_(1),b_(2),b_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the determinant \( \Delta \) is equal to zero given that \( a_1, a_2, a_3 \) are in arithmetic progression (A.P.) and \( b_1, b_2, b_3 \) are in harmonic progression (H.P.), we will follow these steps: ### Step 1: Express \( a_2 \) and \( a_3 \) in terms of \( a_1 \) Since \( a_1, a_2, a_3 \) are in A.P., we can express them as: - \( a_2 = a_1 + d \) - \( a_3 = a_1 + 2d \) where \( d \) is the common difference. ### Step 2: Express \( b_1, b_2, b_3 \) in terms of a common variable Since \( b_1, b_2, b_3 \) are in H.P., we can express their reciprocals as being in A.P. Let: - \( b_1 = \frac{1}{x_1} \) - \( b_2 = \frac{1}{x_2} \) - \( b_3 = \frac{1}{x_3} \) where \( x_1, x_2, x_3 \) are in A.P. Thus, we can write: - \( x_2 = x_1 + d' \) - \( x_3 = x_1 + 2d' \) for some common difference \( d' \). ### Step 3: Set up the determinant \( \Delta \) We need to compute the determinant: \[ \Delta = \begin{vmatrix} a_1 - b_1 & a_1 - b_2 & a_1 - b_3 \\ a_2 - b_1 & a_2 - b_2 & a_2 - b_3 \\ a_3 - b_1 & a_3 - b_2 & a_3 - b_3 \end{vmatrix} \] Substituting \( a_2 \) and \( a_3 \): \[ \Delta = \begin{vmatrix} a_1 - b_1 & a_1 - b_2 & a_1 - b_3 \\ (a_1 + d) - b_1 & (a_1 + d) - b_2 & (a_1 + d) - b_3 \\ (a_1 + 2d) - b_1 & (a_1 + 2d) - b_2 & (a_1 + 2d) - b_3 \end{vmatrix} \] ### Step 4: Simplify the determinant Now, we will perform column operations. Subtract the first column from the second and third columns: \[ \Delta = \begin{vmatrix} a_1 - b_1 & (a_1 - b_2) - (a_1 - b_1) & (a_1 - b_3) - (a_1 - b_1) \\ (a_1 + d) - b_1 & ((a_1 + d) - b_2) - ((a_1 + d) - b_1) & ((a_1 + d) - b_3) - ((a_1 + d) - b_1) \\ (a_1 + 2d) - b_1 & ((a_1 + 2d) - b_2) - ((a_1 + 2d) - b_1) & ((a_1 + 2d) - b_3) - ((a_1 + 2d) - b_1) \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} a_1 - b_1 & b_1 - b_2 & b_1 - b_3 \\ d & d & d \\ 2d & 2d & 2d \end{vmatrix} \] ### Step 5: Factor out common terms Notice that the second and third rows are proportional: \[ \Delta = d \cdot \begin{vmatrix} a_1 - b_1 & b_1 - b_2 & b_1 - b_3 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{vmatrix} \] ### Step 6: Evaluate the determinant Since the second and third rows are identical (both are multiples of each other), the determinant evaluates to zero: \[ \Delta = 0 \] ### Conclusion Thus, we have shown that \( \Delta = 0 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

If a_(1),a_(2),a_(3),…. are in A.P., then a_(p),a_(q),a_(r) are in A.P. if p,q,r are in

If x in R,a_(i),b_(i),c_(i) in R for i=1,2,3 and |{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0 , then which of the following may be true ?

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(2)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

if a_(1),a_(2),a_(3)……,a_(12) are in A.P and Delta_(1)= |{:(a_(1)a_(5),,a_(1),,a_(2)),(a_(2)a_(6),,a_(2),,a_(3)),(a_(3)a_(7),,a_(3),,a_(4)):}| Delta_(2)= |{:(a_(2)a_(10),,a_(2),,a_(3)),(a_(3)a_(11),,a_(3),,a_(4)),(a_(4)a_(12),,a_(4),,a_(5)):}| then Delta_(1):Delta_(2)= "_____"

suppose D= |{:(a_(1),,b_(1),,c_(1)),(a_(2),,b_(2),,c_(2)),(a_(3),,b_(3),,c_(3)):}| and Dprime= |{:(a_(1)+pb_(1),,b_(1)+qc_(1),,c_(1)+ra_(1)),(a_(2)+pb_(2),,b_(2)+qc_(2),,c_(2)+ra_(2)),(a_(3)+pb_(3),,b_(3)+qc_(3),,c_(3)+ra_(3)):}| . Then

if w is a complex cube root to unity then value of Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}| is

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-III
  1. Which one of the following is wrong?

    Text Solution

    |

  2. Which of the following is true for matrix A=[{:(,1,-1),(,2,3):}]

    Text Solution

    |

  3. Suppose a(1),a(2),a(3) are in A.P. and b(1),b(2),b(3) are in H.P. and ...

    Text Solution

    |

  4. Let theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta)...

    Text Solution

    |

  5. If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|,then

    Text Solution

    |

  6. " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a fac...

    Text Solution

    |

  7. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  8. The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,a...

    Text Solution

    |

  9. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  10. Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x)...

    Text Solution

    |

  11. Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|. Then

    Text Solution

    |

  12. Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}| whe...

    Text Solution

    |

  13. If D is determinant of order three of Delta is a determinant formed by...

    Text Solution

    |

  14. Let A,B,C,D be real matrices such that A^(T)=BCD,B^(T)=CDA,C^(T)=DAB a...

    Text Solution

    |

  15. Let A and B be two 2 xx 2 matrix with real entries, If AB=0 and such t...

    Text Solution

    |

  16. If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Text Solution

    |

  17. IF A and B are squre matrices of order 3, then the true statement is/a...

    Text Solution

    |

  18. Let M be a 3xx3 non-singular matrix with det(M)=4,"If" M^(-1)"adj(adjM...

    Text Solution

    |