Home
Class 12
MATHS
Let theta=(pi)/(5),X=[{:(,cos theta,-sin...

Let `theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta):}]`, O is null matrix and I is an identity of order `2 xx 2`, and if `I+X+X^(2)+....+X^(n)=0` then n can be

A

9

B

19

C

4

D

29

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that the equation \[ I + X + X^2 + \ldots + X^n = 0 \] holds true, where \( X \) is defined as: \[ X = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] and \( \theta = \frac{\pi}{5} \). ### Step 1: Calculate \( X^2 \) To find \( X^2 \), we multiply \( X \) by itself: \[ X^2 = X \cdot X = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] Calculating the elements: - First row, first column: \[ \cos^2 \theta + \sin^2 \theta = 1 \] - First row, second column: \[ -\cos \theta \sin \theta + \sin \theta \cos \theta = 0 \] - Second row, first column: \[ \sin \theta \cos \theta + \cos \theta \sin \theta = 0 \] - Second row, second column: \[ -\sin^2 \theta + \cos^2 \theta = \cos 2\theta \] Thus, we have: \[ X^2 = \begin{pmatrix} 1 & 0 \\ 0 & \cos 2\theta \end{pmatrix} \] ### Step 2: General Form of \( X^n \) Using the properties of rotation matrices, we can deduce that: \[ X^n = \begin{pmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{pmatrix} \] ### Step 3: Substitute into the Equation Now substituting into the equation \( I + X + X^2 + \ldots + X^n = 0 \): \[ I + X + X^2 + \ldots + X^n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} + \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix} + \ldots + \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix} = 0 \] ### Step 4: Analyze the Components The equation can be separated into two parts (the components of the identity matrix and the cosine/sine components): 1. For the first component (identity matrix): \[ 1 + \cos \theta + \cos 2\theta + \ldots + \cos n\theta = 0 \] 2. For the second component (sine): \[ -\sin \theta - \sin 2\theta - \ldots - \sin n\theta = 0 \] ### Step 5: Use the Sum of Cosines Formula The sum of cosines can be expressed using the formula for the sum of a geometric series: \[ \sum_{k=0}^{n} \cos(k\theta) = \frac{\sin\left(\frac{(n+1)\theta}{2}\right) \cos\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] Setting this equal to \(-1\) (from the first component) leads us to find \( n \). ### Step 6: Substitute \( \theta = \frac{\pi}{5} \) Substituting \( \theta = \frac{\pi}{5} \): \[ 1 + \cos\left(\frac{\pi}{5}\right) + \cos\left(\frac{2\pi}{5}\right) + \ldots + \cos\left(\frac{n\pi}{5}\right) = 0 \] ### Step 7: Find Values of \( n \) By evaluating the cosine terms, we find that they cancel out for certain values of \( n \). The complete cycle occurs every \( n = 9 \) (as shown in the video). ### Conclusion Thus, the possible values of \( n \) are: \[ n = 9, 19, 29, \ldots \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

If A = [{:("cos" theta, -"sin"theta),("sin"theta, "cos"theta):}] , then the matrix A^(-50) " when " theta = (pi)/(12) , is equal to

If A(theta)=[(sin theta, i cos theta),(i cos theta, sin theta)] , then which of the following is not true ?

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………

Prove that the determinant |(x,sin theta,cos theta),(-sin theta,-x,1),(cos theta,1,x)| is independent of theta

The normal to the curve x=a(cos theta + theta sin theta), y=a(sin theta - theta cos theta) at any theta is such that

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-III
  1. Which one of the following is wrong?

    Text Solution

    |

  2. Which of the following is true for matrix A=[{:(,1,-1),(,2,3):}]

    Text Solution

    |

  3. Suppose a(1),a(2),a(3) are in A.P. and b(1),b(2),b(3) are in H.P. and ...

    Text Solution

    |

  4. Let theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta)...

    Text Solution

    |

  5. If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|,then

    Text Solution

    |

  6. " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a fac...

    Text Solution

    |

  7. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  8. The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,a...

    Text Solution

    |

  9. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  10. Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x)...

    Text Solution

    |

  11. Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|. Then

    Text Solution

    |

  12. Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}| whe...

    Text Solution

    |

  13. If D is determinant of order three of Delta is a determinant formed by...

    Text Solution

    |

  14. Let A,B,C,D be real matrices such that A^(T)=BCD,B^(T)=CDA,C^(T)=DAB a...

    Text Solution

    |

  15. Let A and B be two 2 xx 2 matrix with real entries, If AB=0 and such t...

    Text Solution

    |

  16. If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Text Solution

    |

  17. IF A and B are squre matrices of order 3, then the true statement is/a...

    Text Solution

    |

  18. Let M be a 3xx3 non-singular matrix with det(M)=4,"If" M^(-1)"adj(adjM...

    Text Solution

    |