Home
Class 12
MATHS
If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,...

If `Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|`,then

A

x-y is a factor of `Delta`

B

`(x-y)^(2)` is a factor of `Delta`

C

`(x-y)^(3)` is a factor of `Delta`

D

`Delta` is independent of z

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \(\Delta = \begin{vmatrix} x & 2y - z & -z \\ y & 2x - z & -z \\ y & 2y - z & 2x - 2y - z \end{vmatrix}\), we will perform a series of row operations to simplify it. ### Step 1: Write the determinant \[ \Delta = \begin{vmatrix} x & 2y - z & -z \\ y & 2x - z & -z \\ y & 2y - z & 2x - 2y - z \end{vmatrix} \] ### Step 2: Perform row operations We will first apply the row operation \(R_1 \leftarrow R_1 - R_2\) and \(R_2 \leftarrow R_2 - R_3\). After performing \(R_1 - R_2\): - First element: \(x - y\) - Second element: \((2y - z) - (2x - z) = 2y - 2x\) - Third element: \(-z - (-z) = 0\) After performing \(R_2 - R_3\): - First element: \(y - y = 0\) - Second element: \((2x - z) - (2y - z) = 2x - 2y\) - Third element: \(-z - (2x - 2y - z) = -2x + 2y\) The determinant now looks like this: \[ \Delta = \begin{vmatrix} x - y & 2y - 2x & 0 \\ 0 & 2x - 2y & -2x + 2y \\ y & 2y - z & 2x - 2y - z \end{vmatrix} \] ### Step 3: Factor out common terms From the first row, we can factor out \((x - y)\): \[ \Delta = (x - y) \begin{vmatrix} 1 & 2y - 2x & 0 \\ 0 & 2x - 2y & -2x + 2y \\ y & 2y - z & 2x - 2y - z \end{vmatrix} \] ### Step 4: Simplify the determinant Now we can simplify further. The determinant becomes: \[ \Delta = (x - y) \begin{vmatrix} 1 & 2y - 2x & 0 \\ 0 & 2(x - y) & -2(x - y) \\ y & 2y - z & 2x - 2y - z \end{vmatrix} \] ### Step 5: Evaluate the determinant Notice that we can factor out \(2(x - y)\) from the second row: \[ \Delta = (x - y)^2 \begin{vmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ y & 2y - z & 2x - 2y - z \end{vmatrix} \] ### Step 6: Calculate the remaining determinant We can calculate the remaining determinant, but we can also observe that the factors we have are sufficient to analyze the options. ### Conclusion The final expression for \(\Delta\) is: \[ \Delta = (x - y)^2 \cdot \text{(some expression in } z \text{)} \] From this, we can conclude: 1. \(x - y\) is a factor of \(\Delta\). 2. \(x - y\) squared is also a factor of \(\Delta\). 3. \(x - y\) cubed is not a factor of \(\Delta\). 4. \(\Delta\) is dependent on \(z\).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

Value of |{:(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|

Prove that : |{:(x-y-z ,2x, 2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|=(x+y+z)^(3)

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Show that Delta=|((y+z)^2,xy,zx),(xy,(x+z)^2,yz),(xz,yz,(x+y)^2)|=2x y z(x+y+z)^3 .

Solve the system {:(x-y+2z=-3),(2x+y-z=0),(-x+2y-3z=7):}

If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x+7y+3z)|=-16 then the value of x is

Prove that : |{:(x+y+2z,x,y),(z,y+z+2x,y),(z,x,x+z+2y):}|=2(x+y+z)^(3)

Prove that : =|{:(1,1,1),(x,y,z),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Prove: |(2y, y-z-x,2y),(2z,2z, z-x-y),( x-y-z,2x,2x)|=(x+y+z)^3

Let A=[(0, 2y,z),(x,y,-z),(x,-y,z)] such that A^(T)A=I , then the value of x^(2)+y^(2)+z^(2) is

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-III
  1. Which one of the following is wrong?

    Text Solution

    |

  2. Which of the following is true for matrix A=[{:(,1,-1),(,2,3):}]

    Text Solution

    |

  3. Suppose a(1),a(2),a(3) are in A.P. and b(1),b(2),b(3) are in H.P. and ...

    Text Solution

    |

  4. Let theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta)...

    Text Solution

    |

  5. If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|,then

    Text Solution

    |

  6. " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a fac...

    Text Solution

    |

  7. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  8. The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,a...

    Text Solution

    |

  9. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  10. Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x)...

    Text Solution

    |

  11. Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|. Then

    Text Solution

    |

  12. Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}| whe...

    Text Solution

    |

  13. If D is determinant of order three of Delta is a determinant formed by...

    Text Solution

    |

  14. Let A,B,C,D be real matrices such that A^(T)=BCD,B^(T)=CDA,C^(T)=DAB a...

    Text Solution

    |

  15. Let A and B be two 2 xx 2 matrix with real entries, If AB=0 and such t...

    Text Solution

    |

  16. If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Text Solution

    |

  17. IF A and B are squre matrices of order 3, then the true statement is/a...

    Text Solution

    |

  18. Let M be a 3xx3 non-singular matrix with det(M)=4,"If" M^(-1)"adj(adjM...

    Text Solution

    |