Home
Class 12
MATHS
Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,...

Let `"Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x):}|`, then find determinent

A

f(x)is independent of x

B

`f'(pi//2)=0`

C

`underset(x=2)overset(z)intf(x)dx=0`

D

tangent to the curve y=f(x)at x=0, is y=0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( f(x) = \begin{vmatrix} 2\sin x & \sin^2 x & 0 \\ 1 & 2\sin x & \sin^2 x \\ 0 & 1 & 2\sin x \end{vmatrix} \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ f(x) = \begin{vmatrix} 2\sin x & \sin^2 x & 0 \\ 1 & 2\sin x & \sin^2 x \\ 0 & 1 & 2\sin x \end{vmatrix} \] ### Step 2: Expand the Determinant We will expand the determinant using the first row: \[ f(x) = 2\sin x \begin{vmatrix} 2\sin x & \sin^2 x \\ 1 & 2\sin x \end{vmatrix} - \sin^2 x \begin{vmatrix} 1 & \sin^2 x \\ 0 & 2\sin x \end{vmatrix} + 0 \] ### Step 3: Calculate the 2x2 Determinants 1. For the first determinant: \[ \begin{vmatrix} 2\sin x & \sin^2 x \\ 1 & 2\sin x \end{vmatrix} = (2\sin x)(2\sin x) - (\sin^2 x)(1) = 4\sin^2 x - \sin^2 x = 3\sin^2 x \] 2. For the second determinant: \[ \begin{vmatrix} 1 & \sin^2 x \\ 0 & 2\sin x \end{vmatrix} = (1)(2\sin x) - (0)(\sin^2 x) = 2\sin x \] ### Step 4: Substitute Back into the Determinant Now substitute these results back into the expression for \( f(x) \): \[ f(x) = 2\sin x (3\sin^2 x) - \sin^2 x (2\sin x) \] \[ = 6\sin^3 x - 2\sin^3 x = 4\sin^3 x \] ### Step 5: Final Expression Thus, the determinant is: \[ f(x) = 4\sin^3 x \] ### Step 6: Derivative of the Determinant To find \( f'(x) \), we differentiate \( f(x) \): \[ f'(x) = 4 \cdot 3\sin^2 x \cdot \cos x = 12\sin^2 x \cos x \] ### Step 7: Evaluate the Derivative at \( x = \frac{\pi}{2} \) Now, we evaluate \( f'(\frac{\pi}{2}) \): \[ f'(\frac{\pi}{2}) = 12\sin^2(\frac{\pi}{2}) \cos(\frac{\pi}{2}) = 12 \cdot 1^2 \cdot 0 = 0 \] ### Conclusion Thus, we find that \( f'(\frac{\pi}{2}) = 0 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

|(sin^2x,cosx^2x,1), (cos^2x, sin^2x,1),(-10,12,2)|=0

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

If f(x)= =|{:(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1):}| then the value of int_(0)^(pi//2) f(x)dx , is

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

If Delta=|{:(sinx,sin(x+h),sin(x+2h)),(sin(x+2h),sinx,sin(x+h)),(sin(x+h),sin(x+2h),sinx):}| find lim_(hto0)((Delta)/(h^(2))) .

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

(i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x):}| . (ii) Let A,B and C be the angles of triangle such that Agt=Bgt=C. Find the minimum value of Delta where Delta=|{:(sin^(2)A,sinAcosA,cos^(2)A),(sin^(2) B,sinBcosB,cos^(2)B),(sin^(2)C,sinCcosC,cos^(2)C):}| .

("lim")_(xvec0)(5sinx-7sin2x+3sin3x)/(x^2sinx)

Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)

lim_(x->0) (2+2x+sin2x)/((2x+sin2x)e^sinx) is

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-III
  1. Which one of the following is wrong?

    Text Solution

    |

  2. Which of the following is true for matrix A=[{:(,1,-1),(,2,3):}]

    Text Solution

    |

  3. Suppose a(1),a(2),a(3) are in A.P. and b(1),b(2),b(3) are in H.P. and ...

    Text Solution

    |

  4. Let theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta)...

    Text Solution

    |

  5. If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|,then

    Text Solution

    |

  6. " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a fac...

    Text Solution

    |

  7. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  8. The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,a...

    Text Solution

    |

  9. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  10. Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x)...

    Text Solution

    |

  11. Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|. Then

    Text Solution

    |

  12. Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}| whe...

    Text Solution

    |

  13. If D is determinant of order three of Delta is a determinant formed by...

    Text Solution

    |

  14. Let A,B,C,D be real matrices such that A^(T)=BCD,B^(T)=CDA,C^(T)=DAB a...

    Text Solution

    |

  15. Let A and B be two 2 xx 2 matrix with real entries, If AB=0 and such t...

    Text Solution

    |

  16. If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Text Solution

    |

  17. IF A and B are squre matrices of order 3, then the true statement is/a...

    Text Solution

    |

  18. Let M be a 3xx3 non-singular matrix with det(M)=4,"If" M^(-1)"adj(adjM...

    Text Solution

    |