Home
Class 12
MATHS
Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n...

Let `f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}|` where `("where"f^(n)(x) "donotes "n^(th)` derivative of f(x). (A) `f^(n)(1)"is indepent of a"` (B) `f^(n)(1)"is indepent of n"` (C) `f^(n)(1)"is indepent a or n"` (D) `y=a(x-f^(n)(1))` represent a straight line through the origin

A

`f^(n)(1)"is indepent of a"`

B

`f^(n)(1)"is indepent of n"`

C

`f^(n)(1)"is indepent a of n"`

D

`y=a(x-f^(n)(1))` represent a straight line through the origin

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the determinant \( f(x) \) and find the \( n^{th} \) derivative \( f^{(n)}(1) \). The determinant is given as: \[ f(x) = \begin{vmatrix} \frac{1}{x} & 1 & \log x \\ \frac{1}{n} & (-1)^n & -1 \\ 1 & a & a^2 \end{vmatrix} \] ### Step 1: Calculate the Determinant We will calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our determinant: \[ f(x) = \frac{1}{x} \begin{vmatrix} (-1)^n & -1 \\ a & a^2 \end{vmatrix} - 1 \begin{vmatrix} \frac{1}{n} & -1 \\ 1 & a^2 \end{vmatrix} + \log x \begin{vmatrix} \frac{1}{n} & (-1)^n \\ 1 & a \end{vmatrix} \] Calculating each of the \( 2 \times 2 \) determinants: 1. \( \begin{vmatrix} (-1)^n & -1 \\ a & a^2 \end{vmatrix} = (-1)^n a^2 + a = a((-1)^n + 1) \) 2. \( \begin{vmatrix} \frac{1}{n} & -1 \\ 1 & a^2 \end{vmatrix} = \frac{1}{n} a^2 + 1 = \frac{a^2 + n}{n} \) 3. \( \begin{vmatrix} \frac{1}{n} & (-1)^n \\ 1 & a \end{vmatrix} = \frac{1}{n} a + (-1)^n = \frac{a + (-1)^{n+1} n}{n} \) Substituting these back into the determinant: \[ f(x) = \frac{1}{x} \cdot a((-1)^n + 1) - 1 \cdot \frac{a^2 + n}{n} + \log x \cdot \frac{a + (-1)^{n+1} n}{n} \] ### Step 2: Find the \( n^{th} \) Derivative Now we need to compute the \( n^{th} \) derivative \( f^{(n)}(x) \) and evaluate it at \( x = 1 \). 1. **First Term**: The first term \( \frac{1}{x} \) has the \( n^{th} \) derivative: \[ f_1^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}} \] 2. **Second Term**: The second term is a constant with respect to \( x \), so its \( n^{th} \) derivative is \( 0 \). 3. **Third Term**: The third term \( \log x \) has the \( n^{th} \) derivative: \[ f_2^{(n)}(x) = \frac{(-1)^{n+1} (n-1)!}{x^n} \] Combining these, we find: \[ f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}} + 0 + \frac{(-1)^{n+1} (n-1)!}{x^n} \] ### Step 3: Evaluate at \( x = 1 \) Now we evaluate \( f^{(n)}(1) \): \[ f^{(n)}(1) = (-1)^n n! + (-1)^{n+1} (n-1)! \] ### Step 4: Analyze Independence 1. **Independence of \( a \)**: Since \( f^{(n)}(1) \) does not contain \( a \), it is independent of \( a \). 2. **Independence of \( n \)**: The expression \( f^{(n)}(1) \) does depend on \( n \) since it contains \( n! \) and \( (n-1)! \). 3. **Independence of both \( a \) and \( n \)**: As established, it is independent of \( a \) but dependent on \( n \). 4. **Straight Line Representation**: The equation \( y = a(x - f^{(n)}(1)) \) represents a straight line through the origin when \( f^{(n)}(1) = 0 \). ### Conclusion Thus, the correct options are: - (A) \( f^{(n)}(1) \) is independent of \( a \) - (B) \( f^{(n)}(1) \) is dependent on \( n \) - (D) \( y = a(x - f^{(n)}(1)) \) represents a straight line through the origin.
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^n ,f(1)+(f^1(1))/1+(f^2(1))/(2!)+(f^n(1))/(n !),w h e r ef^r(x) denotes the rth order derivative of f(x) with respect to x , is a. n b. 2^n c. 2^(n-1) d. none of these

If f(x)=lim_(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal to

Let f(n)=2cosn xAAn in N , then f(1)f(n+1)-f(n) is equal to f(n+3) (b) f(n+2) f(n+1)f(2) (d) f(n+2)f(2)

Let f(n) = [1/2 + n/100] where [x] denote the integral part of x. Then the value of sum_(n=1)^100 f(n) is

Let f(x)=(3)/(4)x+1,f^(n)(x) be defined as f^(2)(x)=f(f(x)), and for n ge 2, f^(n+1)(x)=f(f^(n)(x))." If " lambda =lim_(n to oo) f^(n)(x), then

Let f(n)=2cosn xAAn in N , then f(1)f(n+1)-f(n) is equal to (a) f(n+3) (b) f(n+2) (c) f(n+1)f(2) (d) f(n+2)f(2)

f(x)=(1)/(1-x)and f^(n)=fofof....of , then the points of discontinuitym of f^(3n)(x) is/are

If f_(n) = {{:( (f_(n-1))/(2) " when " f_n-1 "is an even number"), (3* f_(n-1) + 1 " when " f_(n-1) " is an odd number "):} and f_(1) = 3 , then f_(5) =

f:N to N, where f(x)=x-(-1)^(x) , Then f is

f_(n)(x)=e^(f_(n-1)(x))" for all "n in N and f_(0)(x)=x," then "(d)/(dx){f_(n)(x)} is

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-III
  1. Which one of the following is wrong?

    Text Solution

    |

  2. Which of the following is true for matrix A=[{:(,1,-1),(,2,3):}]

    Text Solution

    |

  3. Suppose a(1),a(2),a(3) are in A.P. and b(1),b(2),b(3) are in H.P. and ...

    Text Solution

    |

  4. Let theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta)...

    Text Solution

    |

  5. If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|,then

    Text Solution

    |

  6. " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a fac...

    Text Solution

    |

  7. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  8. The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,a...

    Text Solution

    |

  9. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  10. Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x)...

    Text Solution

    |

  11. Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|. Then

    Text Solution

    |

  12. Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}| whe...

    Text Solution

    |

  13. If D is determinant of order three of Delta is a determinant formed by...

    Text Solution

    |

  14. Let A,B,C,D be real matrices such that A^(T)=BCD,B^(T)=CDA,C^(T)=DAB a...

    Text Solution

    |

  15. Let A and B be two 2 xx 2 matrix with real entries, If AB=0 and such t...

    Text Solution

    |

  16. If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Text Solution

    |

  17. IF A and B are squre matrices of order 3, then the true statement is/a...

    Text Solution

    |

  18. Let M be a 3xx3 non-singular matrix with det(M)=4,"If" M^(-1)"adj(adjM...

    Text Solution

    |