Home
Class 12
MATHS
If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-...

If `A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}]` then

A

`|A|=2`

B

A is non-singular

C

Adj. A=`=[{:(,1//2,-1//2,0),(,0,-1,1//2),(,0,0,-1//2):}]`

D

A is skew symmetric matrix

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A \) given its inverse \( A^{-1} \) and then determine the determinant of \( A \). Given: \[ A^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix} \] ### Step 1: Find the matrix \( A \) We know that: \[ A \cdot A^{-1} = I \] where \( I \) is the identity matrix. Therefore, we can express \( A \) as: \[ A = I \cdot A^{-1} \] The identity matrix \( I \) for a 3x3 matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Now, we will compute \( A \) by multiplying \( I \) with \( A^{-1} \): \[ A = I \cdot A^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix} \] ### Step 2: Perform the multiplication Calculating the product: \[ A = \begin{pmatrix} 1 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 & 1 \cdot (-1) + 0 \cdot (-2) + 0 \cdot 0 & 1 \cdot 0 + 0 \cdot 1 + 0 \cdot (-1) \\ 0 \cdot 1 + 1 \cdot 0 + 0 \cdot 0 & 0 \cdot (-1) + 1 \cdot (-2) + 0 \cdot 0 & 0 \cdot 0 + 1 \cdot 1 + 0 \cdot (-1) \\ 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 & 0 \cdot (-1) + 0 \cdot (-2) + 1 \cdot 0 & 0 \cdot 0 + 0 \cdot 1 + 1 \cdot (-1) \end{pmatrix} \] This simplifies to: \[ A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix} \] ### Step 3: Calculate the determinant of \( A \) To find the determinant of \( A \), we can use the formula for the determinant of a 3x3 matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \( A \): \[ A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{pmatrix} \] we have: - \( a = 1, b = -1, c = 0 \) - \( d = 0, e = -2, f = 1 \) - \( g = 0, h = 0, i = -1 \) Calculating the determinant: \[ \text{det}(A) = 1((-2)(-1) - (1)(0)) - (-1)(0(-1) - (1)(0)) + 0(0(0) - (-2)(0)) \] \[ = 1(2 - 0) - (-1)(0 - 0) + 0 \] \[ = 2 - 0 + 0 = 2 \] ### Conclusion Thus, the determinant of \( A \) is: \[ \text{det}(A) = 2 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise PART-IV|1 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-3|31 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-2|19 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If A^(-1)=[(1,-1,2),(0,3,1),(0,0,-1//3)] , then

If A=[{:(1,0,0),(1,0,1),(0,1,0):}] , then

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

if [{:(1,2,a),(0,1,4),(0,0,1):}]^n=[{:(1,18,2007),(0,1,36),(0,0,1):}] then find the value of n

If A^(-1)=[[1,-1, 2],[0, 3,1],[ 0 ,0,-1/3]] , then |A|=-1 b. adj A=[[-1, 1 ,-2],[ 0,-3,-1],[ 0, 0, 1/3]] c. A=[[1, 1/3, 7 ],[0, 1/3, 1],[0 ,0,-3]] d. A =[[1,-1/3,-7],[ 0,-3, 0],[ 0, 0, 1]]

If [2 1 3] [{:(-1,0,-1),(-1,1,0),(0,1,1):}][{:(1),(0),(-1):}] =A, then find the value of A.

If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):}] and BA=M^2 , find the values of a and b.

if A=[{:(3,-1,2),(0,5,-3),(1,-2,7):}]and B=[{:(1,0,0),(0,1,0),(0,0,1):}], find whether AB=BA or Not .

A=[{:(1,0,k),(2, 1,3),(k,0,1):}] is invertible for

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-III
  1. Which one of the following is wrong?

    Text Solution

    |

  2. Which of the following is true for matrix A=[{:(,1,-1),(,2,3):}]

    Text Solution

    |

  3. Suppose a(1),a(2),a(3) are in A.P. and b(1),b(2),b(3) are in H.P. and ...

    Text Solution

    |

  4. Let theta=(pi)/(5),X=[{:(,cos theta,-sin theta),(,sin theta,cos theta)...

    Text Solution

    |

  5. If Delta=|{:(,x,2y-z,-z),(,y,2x-z,-z),(,y,2y-z,2x-2y-z):}|,then

    Text Solution

    |

  6. " if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a fac...

    Text Solution

    |

  7. the determinant |{:(a,,b,,aalpha+b),(b,,c,,balpha+c),(aalpha+b,,balpha...

    Text Solution

    |

  8. The determinant Delta=|{:(,a^(2)(1+x),ab,ac),(,ab,b^(2)(1+x),(bc)),(,a...

    Text Solution

    |

  9. If a non-singular matrix and A^(T) denotes the tranpose of A, then

    Text Solution

    |

  10. Let "Let"(x)=|{:(,2sinx,sin^(2)x,0),(,1,2sin x,sin^(2)x),(,0,1,2sin x)...

    Text Solution

    |

  11. Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}|. Then

    Text Solution

    |

  12. Let f(x)=|{:(,1//x,logx,x^(n)),(,1,-1//n,(-1)^(n)),(,1,a,a^(2)):}| whe...

    Text Solution

    |

  13. If D is determinant of order three of Delta is a determinant formed by...

    Text Solution

    |

  14. Let A,B,C,D be real matrices such that A^(T)=BCD,B^(T)=CDA,C^(T)=DAB a...

    Text Solution

    |

  15. Let A and B be two 2 xx 2 matrix with real entries, If AB=0 and such t...

    Text Solution

    |

  16. If A^(-1)=[{:(,1,-1,0),(,0,-2,1),(,0,0,-1):}] then

    Text Solution

    |

  17. IF A and B are squre matrices of order 3, then the true statement is/a...

    Text Solution

    |

  18. Let M be a 3xx3 non-singular matrix with det(M)=4,"If" M^(-1)"adj(adjM...

    Text Solution

    |