Home
Class 12
MATHS
If A=|{:(,2,-3),(,-4,1):}| then adj (3A^...

If `A=|{:(,2,-3),(,-4,1):}|` then adj `(3A^(2)+12A)` is equal to

A

`[{:(,72,-84),(,-63,51):}]`

B

`[{:(,51,63),(,84,72):}]`

C

`[{:(,51,84),(,63,72):}]`

D

`[{:(,72,-63),(,-84,51):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the adjoint of the matrix expression \(3A^2 + 12A\) where \(A = \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix}\). ### Step 1: Calculate \(A^2\) First, we need to multiply matrix \(A\) by itself: \[ A = \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix} \] Calculating \(A^2 = A \cdot A\): \[ A^2 = \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix} \] Using matrix multiplication: - First element: \(2 \cdot 2 + (-3) \cdot (-4) = 4 + 12 = 16\) - Second element: \(2 \cdot (-3) + (-3) \cdot 1 = -6 - 3 = -9\) - Third element: \((-4) \cdot 2 + 1 \cdot (-4) = -8 - 4 = -12\) - Fourth element: \((-4) \cdot (-3) + 1 \cdot 1 = 12 + 1 = 13\) Thus, \[ A^2 = \begin{pmatrix} 16 & -9 \\ -12 & 13 \end{pmatrix} \] ### Step 2: Calculate \(3A^2\) Now, we multiply \(A^2\) by 3: \[ 3A^2 = 3 \cdot \begin{pmatrix} 16 & -9 \\ -12 & 13 \end{pmatrix} = \begin{pmatrix} 48 & -27 \\ -36 & 39 \end{pmatrix} \] ### Step 3: Calculate \(12A\) Next, we calculate \(12A\): \[ 12A = 12 \cdot \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix} = \begin{pmatrix} 24 & -36 \\ -48 & 12 \end{pmatrix} \] ### Step 4: Calculate \(3A^2 + 12A\) Now, we add \(3A^2\) and \(12A\): \[ 3A^2 + 12A = \begin{pmatrix} 48 & -27 \\ -36 & 39 \end{pmatrix} + \begin{pmatrix} 24 & -36 \\ -48 & 12 \end{pmatrix} \] Calculating the sum: - First element: \(48 + 24 = 72\) - Second element: \(-27 + (-36) = -63\) - Third element: \(-36 + (-48) = -84\) - Fourth element: \(39 + 12 = 51\) Thus, \[ 3A^2 + 12A = \begin{pmatrix} 72 & -63 \\ -84 & 51 \end{pmatrix} \] ### Step 5: Calculate the adjoint of \(3A^2 + 12A\) To find the adjoint of a \(2 \times 2\) matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\), we use the formula: \[ \text{adj} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Applying this to our matrix: \[ \text{adj}(3A^2 + 12A) = \begin{pmatrix} 51 & 63 \\ 84 & 72 \end{pmatrix} \] ### Final Result Thus, the adjoint of \(3A^2 + 12A\) is: \[ \text{adj}(3A^2 + 12A) = \begin{pmatrix} 51 & 63 \\ 84 & 72 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise HLP|34 Videos
  • MATRICES & DETERMINANT

    RESONANCE ENGLISH|Exercise EXERCISE-3|31 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos
  • NUMBER THEORY

    RESONANCE ENGLISH|Exercise Exercise -2 (PART - II)|4 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,2),(,2,1):}] then adj A=

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:} , then f(A) is equal to

If A=|{:(,5a,-b),(,3,2):}| and A adj A=A A^(T) , then 5a+b is equal to

Let A=[(-1,2,-3),(-2,0,3),(3,-3,1)] be a mstrix, then |A|adj(A^(-1)) is equal to

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

if A=[[2,-3],[-4,1]] then (3A^2+12A)=?

If the matrix A is such that A[{:(-1,2),(3,1):}]=[{:(-4,1),(7,7):}] ,then A is equal to

Let A and B are square matrices of order 2 such that A+adj(B^(T))=[(3,2),(2,3)] and A^(T)-adj(B)=[(-2,-1),(-1, -1)] , then A^(2)+2A^(3)+3A^(4)+5A^(5) is equal to (where M^(T) and adj(M) represent the transpose matrix and adjoint matrix of matrix M respectively and I represents the identity matrix of order 2)

RESONANCE ENGLISH-MATRICES & DETERMINANT-PART-II:
  1. If the trivial solution is the only solution of the system of equation...

    Text Solution

    |

  2. Statement -1 : Determinant of a skew-symmetric matrix of order 3 is ze...

    Text Solution

    |

  3. Let A=((1,0,0),(2,1,0),(3,2,1)). If u(1) and u(2) are column matrices ...

    Text Solution

    |

  4. Let P and Q be 3xx3 matrices P ne Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P,...

    Text Solution

    |

  5. The number of values of k for which the system of equations (k+1)x+8y=...

    Text Solution

    |

  6. IF P=[(1,alpha,3),(1,3,3),(2,4,4)] is the adjoint of 3xx3 matrix A and...

    Text Solution

    |

  7. if alpha, beta , ne 0 " and " f(n) =alpha^(n)+beta^(n) " and " |{:(...

    Text Solution

    |

  8. If A is an 3xx3 non-singular matrix such that A A^'=A^' A and B""=""...

    Text Solution

    |

  9. If A=[(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisying the equation A A...

    Text Solution

    |

  10. The set of all values of lambda for which the system of linear equ...

    Text Solution

    |

  11. The system of linear equations x+lambday-z=0, lambdax-y-z=0, x+y-lam...

    Text Solution

    |

  12. If A=[(5a,-b),(3,2)] and A adj A=A A^(T), then 5a+b is equal to

    Text Solution

    |

  13. If S is the set of distinct values of 'b' for which the following ...

    Text Solution

    |

  14. If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

    Text Solution

    |

  15. If the system of linear equations. x+ky+3z=0 3x+ky-2z=0 2x+4y...

    Text Solution

    |

  16. if |{:(x-4,,2x,,3x),(2x,,x-4,,2x),(2x,,2x,,x-4):}|=(A+Bx)(x-A)^(2), th...

    Text Solution

    |

  17. The system of linear equations x + y + z = 2 2x + 3y + 2z = 5 2...

    Text Solution

    |

  18. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  19. Let d in R, and A[{:(,-2,4+d,(sin theta-2)),(,1,(sin theta)+2,d),(,5,(...

    Text Solution

    |

  20. Let A = ((0,2q,r),(p,q,-r),(p,-q,r)). If A A^(T) = I(3), then |p| is

    Text Solution

    |