Home
Class 12
MATHS
Solve the following equation (i) 5cos2...

Solve the following equation
`(i) 5cos2theta+2cos^(2)"(theta)/(2)+1=0`, `-(pi)/(2) lt theta lt (pi)/(2)`
`(ii) sin7theta+sin4theta+sintheta=0`, `0 le theta le pi`
`(iii) tantheta+sectheta=sqrt(3)`, `0 le theta le 2pi`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given equations step by step. ### (i) Solve the equation: \[ 5 \cos(2\theta) + 2 \cos^2\left(\frac{\theta}{2}\right) + 1 = 0 \] **Step 1:** Use the identity for \(\cos(2\theta)\): \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Substituting this into the equation gives: \[ 5(2\cos^2(\theta) - 1) + 2\cos^2\left(\frac{\theta}{2}\right) + 1 = 0 \] **Step 2:** Simplify the equation: \[ 10\cos^2(\theta) - 5 + 2\cos^2\left(\frac{\theta}{2}\right) + 1 = 0 \] \[ 10\cos^2(\theta) + 2\cos^2\left(\frac{\theta}{2}\right) - 4 = 0 \] **Step 3:** Substitute \(\cos^2\left(\frac{\theta}{2}\right) = \frac{1 + \cos(\theta)}{2}\): \[ 10\cos^2(\theta) + 2\left(\frac{1 + \cos(\theta)}{2}\right) - 4 = 0 \] \[ 10\cos^2(\theta) + 1 + \cos(\theta) - 4 = 0 \] \[ 10\cos^2(\theta) + \cos(\theta) - 3 = 0 \] **Step 4:** Let \(x = \cos(\theta)\): \[ 10x^2 + x - 3 = 0 \] **Step 5:** Solve the quadratic equation using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 120}}{20} = \frac{-1 \pm 11}{20} \] Calculating gives: \[ x_1 = \frac{10}{20} = \frac{1}{2}, \quad x_2 = \frac{-12}{20} = -\frac{3}{5} \] **Step 6:** Find \(\theta\): 1. For \(x_1 = \frac{1}{2}\): \[ \cos(\theta) = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3} \] 2. For \(x_2 = -\frac{3}{5}\): \[ \cos(\theta) = -\frac{3}{5} \Rightarrow \theta \text{ is not in } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \] **Final Answer for (i):** \[ \theta = \frac{\pi}{3} \] --- ### (ii) Solve the equation: \[ \sin(7\theta) + \sin(4\theta) + \sin(\theta) = 0 \] **Step 1:** Group \(\sin(7\theta)\) and \(\sin(\theta)\): Using the identity \(\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)\): \[ \sin(7\theta) + \sin(\theta) = 2 \sin(4\theta) \cos(3\theta) \] Thus, the equation becomes: \[ 2 \sin(4\theta) \cos(3\theta) + \sin(4\theta) = 0 \] **Step 2:** Factor out \(\sin(4\theta)\): \[ \sin(4\theta)(2\cos(3\theta) + 1) = 0 \] **Step 3:** Solve each factor: 1. \(\sin(4\theta) = 0\): \[ 4\theta = n\pi \Rightarrow \theta = \frac{n\pi}{4}, \quad n = 0, 1, 2, 3, 4 \] Valid solutions in \([0, \pi]\) are: \(\theta = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi\) 2. \(2\cos(3\theta) + 1 = 0\): \[ \cos(3\theta) = -\frac{1}{2} \Rightarrow 3\theta = \frac{2\pi}{3}, \frac{4\pi}{3} \Rightarrow \theta = \frac{2\pi}{9}, \frac{4\pi}{9} \] **Final Answer for (ii):** \[ \theta = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi, \frac{2\pi}{9}, \frac{4\pi}{9} \] --- ### (iii) Solve the equation: \[ \tan(\theta) + \sec(\theta) = \sqrt{3} \] **Step 1:** Rewrite \(\tan(\theta)\) and \(\sec(\theta)\): \[ \frac{\sin(\theta)}{\cos(\theta)} + \frac{1}{\cos(\theta)} = \sqrt{3} \] Multiply through by \(\cos(\theta)\): \[ \sin(\theta) + 1 = \sqrt{3}\cos(\theta) \] **Step 2:** Rearrange: \[ \sin(\theta) - \sqrt{3}\cos(\theta) + 1 = 0 \] **Step 3:** Square both sides: \[ (\sin(\theta) - \sqrt{3}\cos(\theta))^2 = 1 \] Expanding gives: \[ \sin^2(\theta) - 2\sqrt{3}\sin(\theta)\cos(\theta) + 3\cos^2(\theta) = 1 \] **Step 4:** Use \(\sin^2(\theta) + \cos^2(\theta) = 1\): \[ 1 - 2\sqrt{3}\sin(\theta)\cos(\theta) + 3\cos^2(\theta) = 1 \] This simplifies to: \[ -2\sqrt{3}\sin(\theta)\cos(\theta) + 3\cos^2(\theta) = 0 \] **Step 5:** Factor out \(\cos(\theta)\): \[ \cos(\theta)(3\cos(\theta) - 2\sqrt{3}\sin(\theta)) = 0 \] **Step 6:** Solve: 1. \(\cos(\theta) = 0\): \[ \theta = \frac{\pi}{2}, \frac{3\pi}{2} \] 2. \(3\cos(\theta) = 2\sqrt{3}\sin(\theta)\): \[ \tan(\theta) = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{\pi}{6}, \frac{7\pi}{6} \] **Final Answer for (iii):** \[ \theta = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{6}, \frac{7\pi}{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos

Similar Questions

Explore conceptually related problems

Solve 5 cos 2 theta+2 "cos"^(2) theta/2 +1=0, -pi lt theta lt pi .

Solve : 5cos2theta+2cos^2(theta/2)+1=0,-pi lt theta lt pi

Solve sin^(2) theta-cos theta=1/4, 0 le theta le 2pi .

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

For -pi/2 lt theta lt pi/2, (sintheta + sin 2theta)/(1+costheta + cos2theta) lies in the interval

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

Solve the equation for 0 le x le 2pi. sin theta cos theta = (1)/(2)

Solve sin 3 theta + sin theta = sin 2 theta, 0 le theta le 2pi. Given the general solution.

RESONANCE ENGLISH-FUNDAMENTAL OF MATHEMATICS-Exercise
  1. Solve the following equations (i) sgn({[x]})=0 (ii) sgn(x^(2)-2x-8)=...

    Text Solution

    |

  2. Find the number of solutions of equation (where sgn represent signum f...

    Text Solution

    |

  3. Solve the following equation (i) 5cos2theta+2cos^(2)"(theta)/(2)+1=0...

    Text Solution

    |

  4. Find the number of solution of the following equation |sin x|=|x/10|

    Text Solution

    |

  5. Solve the inequation 2^(1/(cos^2 x))sqrt(y^2-y+1/2)<= 1

    Text Solution

    |

  6. Which of the following are true: \ (2xx3)! =2!xx3!

    Text Solution

    |

  7. The shaded region in the given figure is

    Text Solution

    |

  8. Consider the following statements : 1. Nuu(BnnZ)=(NuuB)nnZ for any s...

    Text Solution

    |

  9. Which of the following venn-diagrams best represents the sets of femal...

    Text Solution

    |

  10. In a college of 300 students, every student reads 5 newspapers and eve...

    Text Solution

    |

  11. In a town of 10,000 families it was found that 40 % families buy newsp...

    Text Solution

    |

  12. Let A(1), A(2) and A(3) be subsets of a set X. Which one of the follow...

    Text Solution

    |

  13. Let A, B, C be distinct subsets of a universal set U. For a subset X o...

    Text Solution

    |

  14. Let U be set with number of elements in U is 2009. Consider the foll...

    Text Solution

    |

  15. Consider the following statements : 1. If A={(x,y) in [RxxR : x^(3)+...

    Text Solution

    |

  16. In a class of 55 students, the number of students studying different s...

    Text Solution

    |

  17. In an examination of a certain class, at least 70% of the students fai...

    Text Solution

    |

  18. A and B two sets such that n(A)=3 and n(B)=6, then

    Text Solution

    |

  19. The number of solution of equation x^3-21 x-20=e^x is/are

    Text Solution

    |

  20. If a!=0 then complete set of solution of (x^2-2x+2^(|a|))/(x^2-a^2)>0 ...

    Text Solution

    |