Home
Class 12
MATHS
If log(1/2) ((x^2+6x+9)/(2(x+1)) )< - lo...

If `log_(1/2) ((x^2+6x+9)/(2(x+1)) )< - log_2(x+1)` then complete set of values of x is

A

`(-1,1+2sqrt(2))`

B

`(1-2sqrt(2),2)`

C

`(-1,oo)`

D

`(1-2sqrt(2),1+2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_{1/2} \left( \frac{x^2 + 6x + 9}{2(x+1)} \right) < -\log_2(x+1) \), we will follow these steps: ### Step 1: Rewrite the logarithm Using the property of logarithms, we can rewrite the left-hand side: \[ \log_{1/2} \left( \frac{x^2 + 6x + 9}{2(x+1)} \right) = -\log_2 \left( \frac{x^2 + 6x + 9}{2(x+1)} \right) \] Thus, the inequality becomes: \[ -\log_2 \left( \frac{x^2 + 6x + 9}{2(x+1)} \right) < -\log_2(x+1) \] ### Step 2: Remove the negative signs Multiplying both sides by -1 reverses the inequality: \[ \log_2 \left( \frac{x^2 + 6x + 9}{2(x+1)} \right) > \log_2(x+1) \] ### Step 3: Exponentiate both sides Since the logarithm is a monotonically increasing function, we can exponentiate both sides: \[ \frac{x^2 + 6x + 9}{2(x+1)} > x + 1 \] ### Step 4: Simplify the inequality Cross-multiplying gives: \[ x^2 + 6x + 9 > 2(x + 1)(x + 1) \] Expanding the right-hand side: \[ x^2 + 6x + 9 > 2(x^2 + 2x + 1) \] \[ x^2 + 6x + 9 > 2x^2 + 4x + 2 \] ### Step 5: Rearranging the terms Rearranging the inequality: \[ 0 > 2x^2 + 4x + 2 - x^2 - 6x - 9 \] \[ 0 > x^2 - 2x - 7 \] This can be rewritten as: \[ x^2 - 2x - 7 < 0 \] ### Step 6: Solve the quadratic inequality To find the roots of the equation \( x^2 - 2x - 7 = 0 \), we use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-7)}}{2 \cdot 1} \] \[ x = \frac{2 \pm \sqrt{4 + 28}}{2} = \frac{2 \pm \sqrt{32}}{2} = \frac{2 \pm 4\sqrt{2}}{2} = 1 \pm 2\sqrt{2} \] Thus, the roots are \( x_1 = 1 - 2\sqrt{2} \) and \( x_2 = 1 + 2\sqrt{2} \). ### Step 7: Determine the intervals The quadratic \( x^2 - 2x - 7 \) opens upwards (since the coefficient of \( x^2 \) is positive). Therefore, it is negative between the roots: \[ 1 - 2\sqrt{2} < x < 1 + 2\sqrt{2} \] ### Step 8: Consider the domain of the logarithm We must also consider the condition for the logarithm to be defined: \[ x + 1 > 0 \implies x > -1 \] ### Step 9: Find the intersection of intervals Now we need to find the intersection of \( (-1, 1 + 2\sqrt{2}) \) and \( (1 - 2\sqrt{2}, 1 + 2\sqrt{2}) \): - \( 1 - 2\sqrt{2} \) is approximately \( -1.828 \), which is less than \(-1\). - Therefore, the intersection is: \[ (-1, 1 + 2\sqrt{2}) \] ### Final Solution The complete set of values of \( x \) that satisfy the inequality is: \[ x \in (-1, 1 + 2\sqrt{2}) \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos

Similar Questions

Explore conceptually related problems

The set of real values of x satisfying log_(1/2) (x^2-6x+12)>=-2

Solve for x:(a) log_(0.3)(x^(2)+8) gt log_(0.3)(9x) , b) log_(7)( (2x-6)/(2x-1)) gt 0

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

Solve log_(1//2)(x^(2)-6x+12) ge -2 .

If (1)/(log_(a)x) + (1)/(log_(b)x) = (2)/(log_(c)x) , prove that : c^(2) = ab .

If log_(3)x-(log_(3)x)^(2)le(3)/(2)log_((1//2sqrt(2)))4 , then x can belong to (a) (-oo,1//3) (b) (9,oo) (c) (1,6) (d) (-oo,0)

Solve the following equations : (i) log_(x)(4x-3)=2 (ii) log_2(x-1)+log_(2)(x-3)=3 (iii) log_(2)(log_(8)(x^(2)-1))=0 (iv) 4^(log_(2)x)-2x-3=0

log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2 .

The value of x, log_(1/2)x >= log_(1/3)x is

RESONANCE ENGLISH-FUNDAMENTAL OF MATHEMATICS-Exercise
  1. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  2. The range of real values of 'p' for which the equation 2log3^2 x-|log...

    Text Solution

    |

  3. If log(1/2) ((x^2+6x+9)/(2(x+1)) )< - log2(x+1) then complete set of v...

    Text Solution

    |

  4. The least positive integer x, which satisfies the inequality log(log(x...

    Text Solution

    |

  5. Complete set of solution of equation (log(0.3)(x-2))/(|x|) >= 0

    Text Solution

    |

  6. The solution set of the inequality |9^x-3^(x+1) + 15| < 2.9^x - 3^x i...

    Text Solution

    |

  7. The complete set of values of x satisfying the equation x^2. 2^(x+1)+...

    Text Solution

    |

  8. If f(x)={x}+{x+[(x)/(1+x^(2))]}+{x+[(x)/(1+2x^(2))]}+{x+[(x)/(1+3x^(2)...

    Text Solution

    |

  9. The number of solution of the equation sgn({x})=|1-x| is/are (where {*...

    Text Solution

    |

  10. The complete set of solution of Inequality (x^2-5 x+6 sgn(x))/(x sgn(x...

    Text Solution

    |

  11. (1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3...

    Text Solution

    |

  12. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  13. If X=x cos theta-y sin theta, Y=x sin theta+y cos theta and X^(2)+4XY...

    Text Solution

    |

  14. Prove that (1+tan1^0)(1+tan2^0)(1+tan45^0)=2^(23)dot

    Text Solution

    |

  15. Find the number of solutions to 2cosx=|sinx|,0lexle4pi.

    Text Solution

    |

  16. if the equation sin (pi x^2) - sin(pi x^2 + 2 pi x) = 0 is solved for ...

    Text Solution

    |

  17. In (0,6pi), the number of solutions of the equation tantheta+tan2theta...

    Text Solution

    |

  18. If 2tan^2x-5secx=1 for exactly seven distinct value of x in [0,(npi)/2...

    Text Solution

    |

  19. The number of integral values of a for which the equation cos2x+a sin ...

    Text Solution

    |

  20. If the arithmetic mean of the roots of the equation 4cos^(3)x-4cos^(2)...

    Text Solution

    |