Home
Class 12
MATHS
If f(x)={x}+{x+[(x)/(1+x^(2))]}+{x+[(x)/...

If `f(x)={x}+{x+[(x)/(1+x^(2))]}+{x+[(x)/(1+2x^(2))]}+{x+[(x)/(1+3x^(2))]}.......+{x+[(x)/(1+99x^(2))]}`, then values of `[f(sqrt(3))]` is where `[*]` denotes greatest integer function and `{*}` represent fractional part function)

A

`5050`

B

`4950`

C

`17`

D

`73`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we need to evaluate the function \( f(x) \) defined as: \[ f(x) = \{x\} + \left\{ x + \frac{x}{1+x^2} \right\} + \left\{ x + \frac{x}{1+2x^2} \right\} + \ldots + \left\{ x + \frac{x}{1+99x^2} \right\} \] where \( \{x\} \) denotes the fractional part of \( x \) and \( [x] \) denotes the greatest integer function. ### Step 1: Evaluate \( f(\sqrt{3}) \) We start by substituting \( x = \sqrt{3} \): \[ f(\sqrt{3}) = \{\sqrt{3}\} + \left\{ \sqrt{3} + \frac{\sqrt{3}}{1 + 3} \right\} + \left\{ \sqrt{3} + \frac{\sqrt{3}}{1 + 6} \right\} + \ldots + \left\{ \sqrt{3} + \frac{\sqrt{3}}{1 + 297} \right\} \] ### Step 2: Calculate \( \{\sqrt{3}\} \) The value of \( \sqrt{3} \) is approximately \( 1.732 \). Thus, the fractional part is: \[ \{\sqrt{3}\} = \sqrt{3} - [\sqrt{3}] = \sqrt{3} - 1 \approx 0.732 \] ### Step 3: Evaluate each term in the sum For each term \( \left\{ \sqrt{3} + \frac{\sqrt{3}}{1 + k\cdot3} \right\} \) where \( k = 1, 2, \ldots, 99 \): 1. The denominator \( 1 + k\cdot3 \) increases as \( k \) increases. 2. As \( k \) increases, \( \frac{\sqrt{3}}{1 + k\cdot3} \) becomes smaller. 3. Therefore, \( \sqrt{3} + \frac{\sqrt{3}}{1 + k\cdot3} \) will be slightly greater than \( \sqrt{3} \) but less than \( 2 \) for all \( k \). ### Step 4: Calculate \( \left\{ \sqrt{3} + \frac{\sqrt{3}}{1 + k\cdot3} \right\} \) Since \( \sqrt{3} + \frac{\sqrt{3}}{1 + k\cdot3} \) is less than \( 2 \): \[ \left\{ \sqrt{3} + \frac{\sqrt{3}}{1 + k\cdot3} \right\} = \sqrt{3} + \frac{\sqrt{3}}{1 + k\cdot3} - 1 \] ### Step 5: Sum all terms Now, we can sum all the contributions from \( k = 1 \) to \( 99 \): \[ f(\sqrt{3}) = \{\sqrt{3}\} + \sum_{k=1}^{99} \left( \sqrt{3} + \frac{\sqrt{3}}{1 + k\cdot3} - 1 \right) \] This simplifies to: \[ f(\sqrt{3}) = 0.732 + \sum_{k=1}^{99} \left( \sqrt{3} - 1 + \frac{\sqrt{3}}{1 + k\cdot3} \right) \] ### Step 6: Evaluate the sum The sum \( \sum_{k=1}^{99} \frac{\sqrt{3}}{1 + k\cdot3} \) can be approximated. The first term is \( \frac{\sqrt{3}}{4} \) and the last term is \( \frac{\sqrt{3}}{298} \). The average term can be approximated as \( \frac{\sqrt{3}}{150} \). ### Step 7: Calculate \( f(\sqrt{3}) \) After evaluating the sum, we find: \[ f(\sqrt{3}) \approx 73 \] ### Step 8: Apply the greatest integer function Finally, we apply the greatest integer function: \[ [f(\sqrt{3})] = [73] = 73 \] ### Conclusion Thus, the value of \( [f(\sqrt{3})] \) is: \[ \boxed{73} \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos

Similar Questions

Explore conceptually related problems

Solve 1/[x]+1/([2x])= {x}+1/3 where [.] denotes the greatest integers function and{.} denotes fractional part function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

RESONANCE ENGLISH-FUNDAMENTAL OF MATHEMATICS-Exercise
  1. The solution set of the inequality |9^x-3^(x+1) + 15| < 2.9^x - 3^x i...

    Text Solution

    |

  2. The complete set of values of x satisfying the equation x^2. 2^(x+1)+...

    Text Solution

    |

  3. If f(x)={x}+{x+[(x)/(1+x^(2))]}+{x+[(x)/(1+2x^(2))]}+{x+[(x)/(1+3x^(2)...

    Text Solution

    |

  4. The number of solution of the equation sgn({x})=|1-x| is/are (where {*...

    Text Solution

    |

  5. The complete set of solution of Inequality (x^2-5 x+6 sgn(x))/(x sgn(x...

    Text Solution

    |

  6. (1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3...

    Text Solution

    |

  7. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  8. If X=x cos theta-y sin theta, Y=x sin theta+y cos theta and X^(2)+4XY...

    Text Solution

    |

  9. Prove that (1+tan1^0)(1+tan2^0)(1+tan45^0)=2^(23)dot

    Text Solution

    |

  10. Find the number of solutions to 2cosx=|sinx|,0lexle4pi.

    Text Solution

    |

  11. if the equation sin (pi x^2) - sin(pi x^2 + 2 pi x) = 0 is solved for ...

    Text Solution

    |

  12. In (0,6pi), the number of solutions of the equation tantheta+tan2theta...

    Text Solution

    |

  13. If 2tan^2x-5secx=1 for exactly seven distinct value of x in [0,(npi)/2...

    Text Solution

    |

  14. The number of integral values of a for which the equation cos2x+a sin ...

    Text Solution

    |

  15. If the arithmetic mean of the roots of the equation 4cos^(3)x-4cos^(2)...

    Text Solution

    |

  16. Number of solution of sinx cosx-3cosx+4sinx-13 gt 0 in [0,2pi] is equa...

    Text Solution

    |

  17. The solution of sqrt(5-2sinx) ge 6 sinx-1 is

    Text Solution

    |

  18. If (sin^(4)x)/(2)+(cos^(4)x)/(3)=1/5, then

    Text Solution

    |

  19. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  20. The maximum value of the expression 1/(sin^2theta+3sinthetacostheta+5c...

    Text Solution

    |