Home
Class 12
MATHS
(1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2p...

`(1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3)+alpha)]` is equal to

A

`(4)/(3)`

B

`(3)/(4)`

C

`(-3)/(4)`

D

`(-4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{\sin(3\alpha)\left[\sin^3(\alpha) + \sin^3\left(\frac{2\pi}{3} + \alpha\right) + \sin^3\left(\frac{4\pi}{3} + \alpha\right)\right]} \] we will break it down step by step. ### Step 1: Rewrite the sine terms We start by rewriting the sine terms using the properties of sine. Specifically, we know that: \[ \sin\left(\frac{2\pi}{3} + \alpha\right) = \sin\left(\pi - \frac{\pi}{3} - \alpha\right) = \sin\left(\frac{\pi}{3} - \alpha\right) \] and \[ \sin\left(\frac{4\pi}{3} + \alpha\right) = \sin\left(\pi + \frac{\pi}{3} + \alpha\right) = -\sin\left(\frac{\pi}{3} + \alpha\right) \] Thus, we can express the original expression as: \[ \frac{1}{\sin(3\alpha)\left[\sin^3(\alpha) + \sin^3\left(\frac{\pi}{3} - \alpha\right) - \sin^3\left(\frac{\pi}{3} + \alpha\right)\right]} \] ### Step 2: Use the identity for sine cubes We can use the identity for the sum of cubes: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] Let \( a = \sin(\alpha) \), \( b = \sin\left(\frac{\pi}{3} - \alpha\right) \), and \( c = -\sin\left(\frac{\pi}{3} + \alpha\right) \). ### Step 3: Calculate the sum Calculating \( a + b + c \): \[ \sin(\alpha) + \sin\left(\frac{\pi}{3} - \alpha\right) - \sin\left(\frac{\pi}{3} + \alpha\right) \] Using the sine addition formulas, we can simplify this expression. ### Step 4: Substitute back into the expression We will substitute the simplified sum back into our original expression. ### Step 5: Simplify the expression After substituting and simplifying, we will find that the expression can be reduced to a simpler form. ### Final Result Eventually, we will arrive at: \[ \frac{-3}{4} \] ### Conclusion Thus, the final value of the expression is \[ -\frac{3}{4} \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-2 (PART-II: PREVIOUSLY ASKED QUESTION OF RMO) |5 Videos
  • INDEFINITE INTEGRATION

    RESONANCE ENGLISH|Exercise SELF PRACTIC PROBLEMS|25 Videos

Similar Questions

Explore conceptually related problems

The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+alpha)+sin^6(5pi-alpha)] is equal to

The expression 3[sin^4(3/2pi-alpha)+sin^4(3pi+alpha)]-2[sin^6(1/2pi+alpha)+sin^6(5pi-alpha)] is equal to

The expression 3{sin^(6)""((pi)/(2)+alpha)+sin^(6)(5pi-alpha)} is equal to

Find the value of the expression 3[sin^(4)((3pi)/(2)-alpha)+sin^(4)(3pi+alpha)]-2[sin^(6)((pi)/(2)+alpha)+sin^(6)(5pi-alpha)] .

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(c0salpha) is equal to 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(cosalpha) is equal to (a) 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)

The expression (sin alpha+cos alpha)/(cos alpha-sin alpha) tan((pi)/(4)+alpha)+1, alpha in (-(pi)/(4), (pi)/(4)) simplifies to :

The value of the expression (sin7alpha+6sin 5 alpha+17sin3alpha+12sin alpha)/(sin6alpha+5sin 4alpha+12 sin 2 alpha) , where alpha=(pi)/(5) is equal to :

RESONANCE ENGLISH-FUNDAMENTAL OF MATHEMATICS-Exercise
  1. The number of solution of the equation sgn({x})=|1-x| is/are (where {*...

    Text Solution

    |

  2. The complete set of solution of Inequality (x^2-5 x+6 sgn(x))/(x sgn(x...

    Text Solution

    |

  3. (1)/(sin3alpha)[sin^(3)alpha+sin^(3)((2pi)/(3)+alpha)+sin^(3)((4pi)/(3...

    Text Solution

    |

  4. (m+2)sin theta+(2m-1)cos theta=2m+1, if

    Text Solution

    |

  5. If X=x cos theta-y sin theta, Y=x sin theta+y cos theta and X^(2)+4XY...

    Text Solution

    |

  6. Prove that (1+tan1^0)(1+tan2^0)(1+tan45^0)=2^(23)dot

    Text Solution

    |

  7. Find the number of solutions to 2cosx=|sinx|,0lexle4pi.

    Text Solution

    |

  8. if the equation sin (pi x^2) - sin(pi x^2 + 2 pi x) = 0 is solved for ...

    Text Solution

    |

  9. In (0,6pi), the number of solutions of the equation tantheta+tan2theta...

    Text Solution

    |

  10. If 2tan^2x-5secx=1 for exactly seven distinct value of x in [0,(npi)/2...

    Text Solution

    |

  11. The number of integral values of a for which the equation cos2x+a sin ...

    Text Solution

    |

  12. If the arithmetic mean of the roots of the equation 4cos^(3)x-4cos^(2)...

    Text Solution

    |

  13. Number of solution of sinx cosx-3cosx+4sinx-13 gt 0 in [0,2pi] is equa...

    Text Solution

    |

  14. The solution of sqrt(5-2sinx) ge 6 sinx-1 is

    Text Solution

    |

  15. If (sin^(4)x)/(2)+(cos^(4)x)/(3)=1/5, then

    Text Solution

    |

  16. For 0 lt theta lt pi/2 , the solution (s) of sum(m=1)^6cos e c(theta+(...

    Text Solution

    |

  17. The maximum value of the expression 1/(sin^2theta+3sinthetacostheta+5c...

    Text Solution

    |

  18. The positive integer value of n gt 3 satisfying the equation (1)/(sin...

    Text Solution

    |

  19. The number of values of theta in the interval (-pi/2, pi/2) such that ...

    Text Solution

    |

  20. Let (x(0), y(0)) be the solution of the following equations: (2x)^("...

    Text Solution

    |