Home
Class 12
MATHS
Find the range of f(x) =x^(2) -5x + 6...

Find the range of `f(x) =x^(2) -5x + 6`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = x^2 - 5x + 6 \), we can follow these steps: ### Step 1: Rewrite the function Let \( y = f(x) = x^2 - 5x + 6 \). ### Step 2: Rearrange the equation Rearranging gives us: \[ x^2 - 5x + (6 - y) = 0 \] This is a quadratic equation in \( x \). ### Step 3: Identify coefficients In the quadratic equation \( ax^2 + bx + c = 0 \), we identify: - \( a = 1 \) - \( b = -5 \) - \( c = 6 - y \) ### Step 4: Use the discriminant condition For the quadratic equation to have real solutions, the discriminant must be non-negative: \[ D = b^2 - 4ac \geq 0 \] Substituting the values of \( a \), \( b \), and \( c \): \[ (-5)^2 - 4 \cdot 1 \cdot (6 - y) \geq 0 \] ### Step 5: Simplify the discriminant Calculating the discriminant: \[ 25 - 4(6 - y) \geq 0 \] Expanding: \[ 25 - 24 + 4y \geq 0 \] This simplifies to: \[ 1 + 4y \geq 0 \] ### Step 6: Solve for \( y \) Rearranging gives: \[ 4y \geq -1 \] Dividing by 4: \[ y \geq -\frac{1}{4} \] ### Step 7: State the range Thus, the range of \( f(x) \) is: \[ y \in \left[-\frac{1}{4}, \infty\right) \]
Promotional Banner

Topper's Solved these Questions

  • EQUATIONS

    RESONANCE ENGLISH|Exercise SELF PRACTICE PROBLEMS: |23 Videos
  • EQUATIONS

    RESONANCE ENGLISH|Exercise EXERCISE-1 (PART -1: PRE RMO) |46 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos
  • FUNDAMENTAL OF MATHEMATICS

    RESONANCE ENGLISH|Exercise Exercise|135 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=|x^(2)-3x+2|

Find the range of f(x)=x^(2)-2|x|+3

Find the range of f(x)=x^2-x-3.

Find the range of f(x)=x^2-x-3.

Find the range of f(x)=x^2-x-3.

Find the range of (a) f(x) = x^(2) + 2x + 4 (b) f(x) = 1+x -x^(2)

Find the range of f(x)=|x-1|-1

Find the range of f(x)=1/(5sinx-6)

Find the range of f(x)=1/(5sinx-6)

Find the range of f(x) = (1)/(2 sin x + 5) .