Home
Class 12
MATHS
Expand the binomial ((2)/(x) +x)^(10) up...

Expand the binomial `((2)/(x) +x)^(10)` up to four terms

Text Solution

AI Generated Solution

The correct Answer is:
To expand the binomial \(\left(\frac{2}{x} + x\right)^{10}\) up to four terms, we will use the Binomial Theorem. The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] where \(\binom{n}{k}\) is the binomial coefficient, calculated as \(\frac{n!}{k!(n-k)!}\). ### Step 1: Identify \(a\), \(b\), and \(n\) In our case, we have: - \(a = \frac{2}{x}\) - \(b = x\) - \(n = 10\) ### Step 2: Write the first four terms of the expansion Using the Binomial Theorem, we will calculate the first four terms (for \(k = 0, 1, 2, 3\)): 1. **First term** (\(k = 0\)): \[ T_0 = \binom{10}{0} \left(\frac{2}{x}\right)^{10} x^0 = 1 \cdot \left(\frac{2}{x}\right)^{10} \cdot 1 = \frac{2^{10}}{x^{10}} = \frac{1024}{x^{10}} \] 2. **Second term** (\(k = 1\)): \[ T_1 = \binom{10}{1} \left(\frac{2}{x}\right)^{9} x^1 = 10 \cdot \left(\frac{2}{x}\right)^{9} \cdot x = 10 \cdot \frac{2^9}{x^9} \cdot x = 10 \cdot \frac{512}{x^9} \cdot x = \frac{5120}{x^8} \] 3. **Third term** (\(k = 2\)): \[ T_2 = \binom{10}{2} \left(\frac{2}{x}\right)^{8} x^2 = 45 \cdot \left(\frac{2}{x}\right)^{8} \cdot x^2 = 45 \cdot \frac{2^8}{x^8} \cdot x^2 = 45 \cdot \frac{256}{x^8} \cdot x^2 = \frac{11520}{x^6} \] 4. **Fourth term** (\(k = 3\)): \[ T_3 = \binom{10}{3} \left(\frac{2}{x}\right)^{7} x^3 = 120 \cdot \left(\frac{2}{x}\right)^{7} \cdot x^3 = 120 \cdot \frac{2^7}{x^7} \cdot x^3 = 120 \cdot \frac{128}{x^7} \cdot x^3 = \frac{15360}{x^4} \] ### Step 3: Combine the terms Now, we can combine the first four terms we calculated: \[ \left(\frac{2}{x} + x\right)^{10} \approx \frac{1024}{x^{10}} + \frac{5120}{x^8} + \frac{11520}{x^6} + \frac{15360}{x^4} \] ### Final Answer Thus, the expansion of \(\left(\frac{2}{x} + x\right)^{10}\) up to four terms is: \[ \frac{1024}{x^{10}} + \frac{5120}{x^8} + \frac{11520}{x^6} + \frac{15360}{x^4} \]
Promotional Banner

Topper's Solved these Questions

  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Self practice problems|30 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-1 (Part-I: Pre RMO)|14 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise High Level Problems (HLP)|35 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos

Similar Questions

Explore conceptually related problems

Expand the binomial ((x^(2))/(3) + (3)/(x))^(5)

Expand using binomial theorem: (i) (1-2x)^(4)

In the binomial expansion of (1 + x)^(10) , the coefficeents of (2m + 1)^(th) and (4m + 5)^(th) terms are equal. Value of m is

Expand of the expression : (2/x-x/2)^5

If the fourth term in the binomial expansin of ((2)/(x) + x^(log_(8) x))^(6) (x gt 0) is 20 xx 8^(7) , then the value of x is

The expansion by the binomial theorem of (2 x + (1)/(8) )^(10) is 1024x^(10) + 640x^(9) + ax^(8) + bx^(7) + … Calculate (iii) the value of x , for which the third ·and the fourth terms in the expansion of (2x + (1)/(8) )^(10) are equal.

In a binomial expansion, ( x+ a)^(n) , the first three terms are 1, 56 and 1372 respectively. Find values of x and a .

If the middle term in the binomial expansion of ((1)/(x) + x sin x )^(10) is ( 63)/( 8) , then the value of 6sin^(2) x +sin x -2 is

Expand using binomial theorem: (i) (1-2x)^(4) " " (ii) (1+(1)/(x^(2)))^(4)

Find the term independent of x in the expansion of the following binomials: (2x^(2) - (1)/(x) )^12 What is its value?