Home
Class 12
MATHS
Find all 6-digit natural numbers a(1) a(...

Find all 6-digit natural numbers `a_(1) a_(2)a_(3)a_(4)a_(5)a_(6)` formed by using the digits 1,2,3,4,5,6 once each such that number `a_(1) a_(2) a_(3)…a_(k)` is divisible by k for `1 le k le 6`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-I: Previous Asked Question for Pre RMO)|17 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-1 (Part-I: Pre RMO)|14 Videos
  • APPLICATION OF DERIVATIVES

    RESONANCE ENGLISH|Exercise High Level Problems (HLP)|35 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos

Similar Questions

Explore conceptually related problems

Let (a_(1),a_(2),a_(3),a_(4),a_(5)) denote a re=arrangement of (3,-5,7,4-9), then a_(1)x^(4)+a_(2)x^(3)+a_(3)x^(2)+a_(4)+a_(5)=0 has

If a_(1)+a_(5)+a_(10)+a_(15)+a_(20)=225 , then the sum of the first 24 terms of the arithmetic progression a_(1), a_(2), a_(3)…….. is equal to

The number of increasing function from f : AtoB where A in {a_(1),a_(2),a_(3),a_(4),a_(5),a_(6)} , B in {1,2,3,….,9} such that a_(i+1) gt a_(i) AA I in N and a_(i) ne i is

a_(1),a_(2),a_(3),a_(4),a_(5), are first five terms of an A.P. such that a_(1) +a_(3) +a_(5) = -12 and a_(1) .a_(2) . a_(3) =8 . Find the first term and the common difference.

If a_(1),a_(2),a_(3),a_(4) and a_(5) are in AP with common difference ne 0, find the value of sum_(i=1)^(5)a_(i) " when " a_(3)=2 .

If a_(1)=1, a_(2)=5 and a_(n+2)=5a_(n+1)-6a_(n), n ge 1 , show by using mathematical induction that a_(n)=3^(n)-2^(n)

find all the possible triplets (a_(1), a_(2), a_(3)) such that a_(1)+a_(2) cos (2x)+a_(3) sin^(2) (x)=0 for all real x.

The number of all possible 5-tuples (a_(1),a_(2),a_(3),a_(4),a_(5)) such that a_(1)+a_(2) sin x+a_(3) cos x + a_(4) sin 2x +a_(5) cos 2 x =0 hold for all x is

If a_(1)=3 and a_(n)=2a_(n-1)+5 , find a_(4) .

For an increasing G.P. a_(1), a_(2), a_(3),.....a_(n), " If " a_(6) = 4a_(4), a_(9) - a_(7) = 192 , then the value of sum_(l=1)^(oo) (1)/(a_(i)) is