Home
Class 12
MATHS
If A=[{:(2,0),(0,2):}] then A^(2) - 3I=…...

If `A=[{:(2,0),(0,2):}]` then `A^(2) - 3I`=……

A

O

B

I

C

A

D

3A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( A^2 - 3I \) where \( A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \) and \( I \) is the identity matrix. ### Step-by-Step Solution: **Step 1: Calculate \( A^2 \)** To find \( A^2 \), we multiply matrix \( A \) by itself. \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] Calculating the product: \[ A^2 = \begin{pmatrix} (2 \cdot 2 + 0 \cdot 0) & (2 \cdot 0 + 0 \cdot 2) \\ (0 \cdot 2 + 2 \cdot 0) & (0 \cdot 0 + 2 \cdot 2) \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} \] **Step 2: Calculate \( 3I \)** The identity matrix \( I \) for a \( 2 \times 2 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Now, we multiply \( I \) by 3: \[ 3I = 3 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] **Step 3: Calculate \( A^2 - 3I \)** Now we subtract \( 3I \) from \( A^2 \): \[ A^2 - 3I = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] Calculating the subtraction: \[ A^2 - 3I = \begin{pmatrix} (4 - 3) & (0 - 0) \\ (0 - 0) & (4 - 3) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] **Final Result:** \[ A^2 - 3I = I \]
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES) [FILL IN THE BLANKS) |10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES) [SOLVE THE FOLLOWING]|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise BINOMIAL DISTRIBUTION|20 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(2,-1),(-1,2):}] , verify A^(2)-4A+3I=0 , where I=[{:(1,0),(0,1):}] and O=[{:(0,0),(0,0):}] . Hence find A^(-1) .

If A = [ (0,1,1),(1,0,1),(1,1,0)] then A^(2) - 3I =

If the matrix A=({:(0,2),(K,-1):}) satisfies A(A^(3)+3I)=2I , then then value of K is

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

If A=[(4,2),(-1,1)] , show that (A-2 I) A-3 I) =0

Find AB and BA if exists from the following matrices A and B: (i) A=[{:(2,3,-1),(0,1,2):}]and B=[{:(2,-6),(-4,0):}] (ii) A=[{:(1,2,3),(0,1,-2),(-1,0,-1):}]and B=[{:(0,0,2),(2,0,0),(0,2,0):}] (iii) A=[{:(0,3,4),(2,1,-2),(1,-3,-1):}]and B=[{:(2,1,3),(-1,0,-2):}]

If A=((1,0,0),(0,2,1),(1,0,3)) then (A-I)(A-2I)(A-3I)=

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-PART-1 (MATRICES)
  1. If A=[{:(6,0),(p,q):}] is a scalar matrix then the value of p and q a...

    Text Solution

    |

  2. If B=[{:(6,3),(-2,k):}] is singular matrix then the value of k is

    Text Solution

    |

  3. If A=[{:(1, 3/5, x),(y, -5, -7),(-4,-7,0):}] is a symmetric matrix the...

    Text Solution

    |

  4. [{:(3,2,1):}] [{: ( 2),(-2),(-1):}]=

    Text Solution

    |

  5. If A=[{:(2,0),(0,2):}] then A^(2) - 3I=……

    Text Solution

    |

  6. If A is a square matrix, then A+A^(T) is

    Text Solution

    |

  7. If A and B are any two square matrices of the same order then (A) (AB)...

    Text Solution

    |

  8. If A=[{:(,1,2),(,2,1):}] then adj A=

    Text Solution

    |

  9. If A is a non singular matrix of order 3 then|adj(A)|=……………

    Text Solution

    |

  10. If A^(2) + 5A + 3I =0, |A| ne 0 then A^(-1)=………………..

    Text Solution

    |

  11. If A is non singular then |A|= 0. True or False.

    Text Solution

    |

  12. Inverse of [{:(2,0),(0,3):}] is [{:(1/2,0),(0,1/3):}] True or False.

    Text Solution

    |

  13. If [{:(3,0),(0,2):}][{:(x),(y):}] = [{:(3),(2):}], then x=1 and y=-1. ...

    Text Solution

    |

  14. Representation of matrix as the sum of symmetric and skew symmetric ma...

    Text Solution

    |

  15. If A=[{:(1,2,-5),(2,-3,4),(-5,4,9):}], then A^(T) =A. True or False

    Text Solution

    |

  16. Matrix [{:(a,b,c),(p,q,r),(2a-p, 2b-q, 2c-r):}] is singular. True or F...

    Text Solution

    |

  17. [{:(2,0,0),(3,-1,0),(-7,3,1):}] is a skew symmetric matrix. True or ...

    Text Solution

    |

  18. If A is an mxxn matrix and B is nxxp matrix does A B exist? If yes, wr...

    Text Solution

    |

  19. After applying elementary transformation R(1) - 3R(2) on matrix [{:(3...

    Text Solution

    |

  20. If A and B are two square matrices such that AB=BA then (A-B)^(2) =A^(...

    Text Solution

    |