Home
Class 12
MATHS
If [{:(3,0),(0,2):}][{:(x),(y):}] = [{:(...

If `[{:(3,0),(0,2):}][{:(x),(y):}] = [{:(3),(2):}]`, then x=1 and y=-1. True or False.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we need to multiply the two matrices and set them equal to the resulting matrix. Let's break it down step by step. ### Step 1: Write down the matrices We have two matrices: 1. Matrix A: \[ A = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \] 2. Matrix B: \[ B = \begin{pmatrix} x \\ y \end{pmatrix} \] 3. Resulting Matrix C: \[ C = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \] ### Step 2: Multiply the matrices Now, we multiply matrix A by matrix B: \[ A \cdot B = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} \] The multiplication results in: - The first element: \(3 \cdot x + 0 \cdot y = 3x\) - The second element: \(0 \cdot x + 2 \cdot y = 2y\) Thus, we have: \[ A \cdot B = \begin{pmatrix} 3x \\ 2y \end{pmatrix} \] ### Step 3: Set the resulting matrix equal to matrix C Now, we set the result equal to matrix C: \[ \begin{pmatrix} 3x \\ 2y \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \] ### Step 4: Create equations from the matrix equality From the equality of the matrices, we can derive two equations: 1. \(3x = 3\) 2. \(2y = 2\) ### Step 5: Solve for x and y Now, we solve each equation: 1. From \(3x = 3\): \[ x = \frac{3}{3} = 1 \] 2. From \(2y = 2\): \[ y = \frac{2}{2} = 1 \] ### Conclusion We find that \(x = 1\) and \(y = 1\). ### Final Statement The statement "x=1 and y=-1" is **False** because we found \(y = 1\). ---
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES) [FILL IN THE BLANKS) |10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES) [SOLVE THE FOLLOWING]|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise BINOMIAL DISTRIBUTION|20 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8):}]

(2x -2y+3) dx -(x-y+1) dy=0 , " when" x=0, y=1

(1+x)(dy)/(dx)=((1+x)^2+(y-3)) , If y(2)=0 then y(3)=?

Find 'x' and 'y', if 2[(1,3),(0,x)]+[(y,0),(1,2)]=[(5,6),(1,8)]

The equation [1 x y][(1,3,1),(0,2,-1),(0,2,-1)] [(1),(x),(y)]=[0] has

Consider the system of equations x-2y+3z=-1, -x+y-2z=k, x-3y+4z=1 Assertion: The system of equations has no solution for k!=3 and Reason: The determinant |(1,3,-1),(-1,-2,k),(1,4,1)|!=0, for k!=3 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

If [[x, y^(3)], [2, 0]]=[[1, 8], [2, 0]] , then [[x, y], [2, 0]]^(-1)=

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-PART-1 (MATRICES)
  1. If A=[{:(6,0),(p,q):}] is a scalar matrix then the value of p and q a...

    Text Solution

    |

  2. If B=[{:(6,3),(-2,k):}] is singular matrix then the value of k is

    Text Solution

    |

  3. If A=[{:(1, 3/5, x),(y, -5, -7),(-4,-7,0):}] is a symmetric matrix the...

    Text Solution

    |

  4. [{:(3,2,1):}] [{: ( 2),(-2),(-1):}]=

    Text Solution

    |

  5. If A=[{:(2,0),(0,2):}] then A^(2) - 3I=……

    Text Solution

    |

  6. If A is a square matrix, then A+A^(T) is

    Text Solution

    |

  7. If A and B are any two square matrices of the same order then (A) (AB)...

    Text Solution

    |

  8. If A=[{:(,1,2),(,2,1):}] then adj A=

    Text Solution

    |

  9. If A is a non singular matrix of order 3 then|adj(A)|=……………

    Text Solution

    |

  10. If A^(2) + 5A + 3I =0, |A| ne 0 then A^(-1)=………………..

    Text Solution

    |

  11. If A is non singular then |A|= 0. True or False.

    Text Solution

    |

  12. Inverse of [{:(2,0),(0,3):}] is [{:(1/2,0),(0,1/3):}] True or False.

    Text Solution

    |

  13. If [{:(3,0),(0,2):}][{:(x),(y):}] = [{:(3),(2):}], then x=1 and y=-1. ...

    Text Solution

    |

  14. Representation of matrix as the sum of symmetric and skew symmetric ma...

    Text Solution

    |

  15. If A=[{:(1,2,-5),(2,-3,4),(-5,4,9):}], then A^(T) =A. True or False

    Text Solution

    |

  16. Matrix [{:(a,b,c),(p,q,r),(2a-p, 2b-q, 2c-r):}] is singular. True or F...

    Text Solution

    |

  17. [{:(2,0,0),(3,-1,0),(-7,3,1):}] is a skew symmetric matrix. True or ...

    Text Solution

    |

  18. If A is an mxxn matrix and B is nxxp matrix does A B exist? If yes, wr...

    Text Solution

    |

  19. After applying elementary transformation R(1) - 3R(2) on matrix [{:(3...

    Text Solution

    |

  20. If A and B are two square matrices such that AB=BA then (A-B)^(2) =A^(...

    Text Solution

    |