Home
Class 12
MATHS
After applying elementary transformation...

After applying elementary transformation `R_(1) - 3R_(2)` on matrix `[{:(3,-2),(1,4):}]` we get `[{:(0,-12),(1,4):}]`. True or False.

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the statement is true or false, we will apply the elementary transformation \( R_1 - 3R_2 \) on the given matrix \( \begin{pmatrix} 3 & -2 \\ 1 & 4 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Identify the Rows**: - Let \( R_1 = \begin{pmatrix} 3 & -2 \end{pmatrix} \) - Let \( R_2 = \begin{pmatrix} 1 & 4 \end{pmatrix} \) 2. **Calculate \( 3R_2 \)**: - Multiply \( R_2 \) by 3: \[ 3R_2 = 3 \times \begin{pmatrix} 1 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 12 \end{pmatrix} \] 3. **Perform the Transformation**: - Now apply the transformation \( R_1 - 3R_2 \): \[ R_1 - 3R_2 = \begin{pmatrix} 3 & -2 \end{pmatrix} - \begin{pmatrix} 3 & 12 \end{pmatrix} \] - This results in: \[ R_1 - 3R_2 = \begin{pmatrix} 3 - 3 & -2 - 12 \end{pmatrix} = \begin{pmatrix} 0 & -14 \end{pmatrix} \] 4. **Construct the New Matrix**: - After the transformation, the new matrix becomes: \[ \begin{pmatrix} 0 & -14 \\ 1 & 4 \end{pmatrix} \] 5. **Compare with the Given Matrix**: - The given matrix after transformation is \( \begin{pmatrix} 0 & -12 \\ 1 & 4 \end{pmatrix} \). - Our calculated matrix is \( \begin{pmatrix} 0 & -14 \\ 1 & 4 \end{pmatrix} \). 6. **Conclusion**: - Since \( -14 \neq -12 \), the statement is **False**.
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES) [FILL IN THE BLANKS) |10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES) [SOLVE THE FOLLOWING]|6 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise BINOMIAL DISTRIBUTION|20 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Using elementary transformations find the inverse of the matrix A=[(2,1),(4,7)]

The using elementary row transformation inverse of the matrix {:((1,-1),(2,3)):} is

Using elementary transformations,find the inverse of the matrix ,[[3,-1-4,2]]

Using elementary transformations,find the inverse of the matrix [[6,-3-2,1]]

Using elementary transformation,find the inverse of the matrix [[10,-2-5,1]]

Using elementary transformations,find the inverse of the matrix ,[[2,-3-1,2]]

Using elementary transformations,find the inverse of the matrix [[1,-12,3]]

Using elementary transformations,find the inverse of the matrix ,[[2,11,1]]

Using elementary transformations, find the inverse of the following matrix [(2,-1,4),(4,0,2),(3,-2,7)]

NAVNEET PUBLICATION - MAHARASHTRA BOARD-QUESTION BANK 2021-PART-1 (MATRICES)
  1. If A=[{:(6,0),(p,q):}] is a scalar matrix then the value of p and q a...

    Text Solution

    |

  2. If B=[{:(6,3),(-2,k):}] is singular matrix then the value of k is

    Text Solution

    |

  3. If A=[{:(1, 3/5, x),(y, -5, -7),(-4,-7,0):}] is a symmetric matrix the...

    Text Solution

    |

  4. [{:(3,2,1):}] [{: ( 2),(-2),(-1):}]=

    Text Solution

    |

  5. If A=[{:(2,0),(0,2):}] then A^(2) - 3I=……

    Text Solution

    |

  6. If A is a square matrix, then A+A^(T) is

    Text Solution

    |

  7. If A and B are any two square matrices of the same order then (A) (AB)...

    Text Solution

    |

  8. If A=[{:(,1,2),(,2,1):}] then adj A=

    Text Solution

    |

  9. If A is a non singular matrix of order 3 then|adj(A)|=……………

    Text Solution

    |

  10. If A^(2) + 5A + 3I =0, |A| ne 0 then A^(-1)=………………..

    Text Solution

    |

  11. If A is non singular then |A|= 0. True or False.

    Text Solution

    |

  12. Inverse of [{:(2,0),(0,3):}] is [{:(1/2,0),(0,1/3):}] True or False.

    Text Solution

    |

  13. If [{:(3,0),(0,2):}][{:(x),(y):}] = [{:(3),(2):}], then x=1 and y=-1. ...

    Text Solution

    |

  14. Representation of matrix as the sum of symmetric and skew symmetric ma...

    Text Solution

    |

  15. If A=[{:(1,2,-5),(2,-3,4),(-5,4,9):}], then A^(T) =A. True or False

    Text Solution

    |

  16. Matrix [{:(a,b,c),(p,q,r),(2a-p, 2b-q, 2c-r):}] is singular. True or F...

    Text Solution

    |

  17. [{:(2,0,0),(3,-1,0),(-7,3,1):}] is a skew symmetric matrix. True or ...

    Text Solution

    |

  18. If A is an mxxn matrix and B is nxxp matrix does A B exist? If yes, wr...

    Text Solution

    |

  19. After applying elementary transformation R(1) - 3R(2) on matrix [{:(3...

    Text Solution

    |

  20. If A and B are two square matrices such that AB=BA then (A-B)^(2) =A^(...

    Text Solution

    |