Home
Class 12
MATHS
x=at^(2),y=2at,...

`x=at^(2),y=2at`,

A

`1/(at^(3))`

B

`-1/(at^(3))`

C

`-1/(at^(2))`

D

`1/(at^(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) (FILL IN THE BLANKS) |10 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (DIFFERENTIATION) ( State whether each of the following is True or False :)|11 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PART-1 (MATRICES) [4 MARKS]|5 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)

Form the differential equation of the family of curves represented by the equation (a being the parameter): (2x+a)^(2)+y^(2)=a^(2)(2x-a)^(2)-y^(2)=a^(2)(x-a)^(2)+2y^(2)=a^(2)

If x^(2)+(x)/(y^(2))=y^(2)+(y)/(x^(2))=2 then find x^(2)+y^(2)

Find the area of the region {(x,y):x^(2)+y^(2) =2}

The locus of a point,from where the tangents to the rectangular hyperbola x^(2)-y^(2)=a^(2) contain an angle of 45^(0), is (x^(2)+y^(2))^(2)+a^(2)(x^(2)-y^(2))=4a^(2)2(x^(2)+y^(2))^(2)+4a^(2)(x^(2)-y^(2))=4a^(2)(x^(2)+y^(2))^(2)+4a^(2)(x^(2)-y^(2))=4a^(2)(x^(2)+y^(2))+a^(2(x^(2)-y^(2)))=a^(4)

If a=(x)/(x^(2)+y^(2))and b=(y)/(x^(2)+y^(2)). The value of (x+y) is

The angle between the circles x^(2)+y^(2)=16 and (x-2)^(2)+(y+2)^(2)=25

If y=(tan^(-1)x)^(2), then prove that (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)=2