Home
Class 12
MATHS
Evaluate sin[cos^(-1) ((3)/(5))]...

Evaluate `sin[cos^(-1) ((3)/(5))]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \sin[\cos^{-1}(\frac{3}{5})] \), we can follow these steps: ### Step 1: Understand the expression We have \( \cos^{-1}(\frac{3}{5}) \). This means we are looking for an angle \( \theta \) such that \( \cos(\theta) = \frac{3}{5} \). ### Step 2: Draw a right triangle To visualize this, we can draw a right triangle where: - The adjacent side (base) is 3, - The hypotenuse is 5. ### Step 3: Find the length of the opposite side Using the Pythagorean theorem, we can find the length of the opposite side (perpendicular): \[ \text{hypotenuse}^2 = \text{adjacent}^2 + \text{opposite}^2 \] Substituting the known values: \[ 5^2 = 3^2 + \text{opposite}^2 \] \[ 25 = 9 + \text{opposite}^2 \] \[ \text{opposite}^2 = 25 - 9 = 16 \] \[ \text{opposite} = \sqrt{16} = 4 \] ### Step 4: Calculate the sine of the angle Now we can find \( \sin(\theta) \) where \( \theta = \cos^{-1}(\frac{3}{5}) \): \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{4}{5} \] ### Step 5: Conclusion Thus, the value of \( \sin[\cos^{-1}(\frac{3}{5})] \) is: \[ \sin[\cos^{-1}(\frac{3}{5})] = \frac{4}{5} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise PAIRS OF LINES |21 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise VECTOR AND THREE DIMENSIONAL GEOMETRY |54 Videos
  • QUESTION BANK 2021

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MATRICES|63 Videos
  • PROBABILITY DISTRIBUTION

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NAVNEET PUBLICATION - MAHARASHTRA BOARD|Exercise MULTIPLE CHOICE QUESTIONS|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate sin[2cos^(-1)(-3/5)] .

Evaluate (i) sin (cos^(-1) (3/5))

Evaluate sin(2cos^(-1)(-(5)/(15)))

Evaluate: sin^(-1)(sin(3 pi)/(5))

Evaluate: i) sin(cos^(-1)(3/5)) , ii) cos(tan^(-1)(3/4))

Evaluate: sin{sin^(-1)(-(3)/(5))+cot^(-1)(-(5)/(12))}

Evaluate cos(sin^(-1)(4/5)+cos^(-1)(2/3))

Evaluate: int(cos^(4)x)/(sin^(3)x(sin^(5)x+cos^(5)x)^((3)/(5)))dx

Evaluate int_(cos(cos ^(-1) alpha))^(sin(sin^(-1)beta))|(cos (cos^(-1)x)/(sin(sin^(-1)x)))|dx

Find the value of sin^(-1)(cos(pi/5))