Home
Class 12
CHEMISTRY
If the standed electrode potential for a...

If the standed electrode potential for a cell is 2 V at 300 K, the equilibrium constant (K) for the reaction
`Zn(s)+Cu^(2+)(aq) hArrZn^(2+)(aq)+Cu(s)`
at 300 K is approximately
`(R=8JK^(-1)mol^(-1),F=96000Cmol^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant (K) for the reaction: \[ \text{Zn(s)} + \text{Cu}^{2+}(aq) \rightleftharpoons \text{Zn}^{2+}(aq) + \text{Cu(s)} \] given that the standard electrode potential (E°) is 2 V at 300 K, we will use the following relationships: 1. **Gibbs Free Energy and Equilibrium Constant**: \[ \Delta G = -RT \ln K \] 2. **Gibbs Free Energy and Electrode Potential**: \[ \Delta G = -nFE^\circ \] Where: - \( R \) = 8 J/K·mol (gas constant) - \( T \) = 300 K (temperature) - \( n \) = number of moles of electrons transferred in the reaction - \( F \) = 96000 C/mol (Faraday's constant) - \( E^\circ \) = 2 V (standard electrode potential) ### Step-by-Step Solution: **Step 1: Determine the number of electrons transferred (n)** In the given reaction: - Zinc (Zn) loses 2 electrons to form Zn²⁺. - Copper (Cu²⁺) gains 2 electrons to form Cu. Thus, \( n = 2 \). **Step 2: Use the second equation to find ΔG** Substituting the values into the equation: \[ \Delta G = -nFE^\circ \] \[ \Delta G = -2 \times 96000 \, \text{C/mol} \times 2 \, \text{V} \] \[ \Delta G = -384000 \, \text{J/mol} \] **Step 3: Use the first equation to relate ΔG and K** Now, we can substitute ΔG into the first equation: \[ -384000 = -RT \ln K \] \[ 384000 = (8 \, \text{J/K·mol}) \times (300 \, \text{K}) \ln K \] **Step 4: Calculate RT** Calculating \( RT \): \[ RT = 8 \times 300 = 2400 \, \text{J/mol} \] **Step 5: Solve for ln K** Now substituting back: \[ 384000 = 2400 \ln K \] \[ \ln K = \frac{384000}{2400} \] \[ \ln K = 160 \] **Step 6: Calculate K** To find K, we exponentiate both sides: \[ K = e^{160} \] ### Final Answer: The equilibrium constant \( K \) for the reaction at 300 K is approximately: \[ K \approx e^{160} \]

To find the equilibrium constant (K) for the reaction: \[ \text{Zn(s)} + \text{Cu}^{2+}(aq) \rightleftharpoons \text{Zn}^{2+}(aq) + \text{Cu(s)} \] given that the standard electrode potential (E°) is 2 V at 300 K, we will use the following relationships: 1. **Gibbs Free Energy and Equilibrium Constant**: \[ ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise CHEMISTRY - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 30 | JEE -2020

    VMC MODULES ENGLISH|Exercise CHEMISTRY|25 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise CHEMISTRY ( SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If the standard electrode potential for a cell is 2V at 300 K, the equilibrium constant (K) for the reaction Zn(s) + Cu^(2+) (aq) at 300 k is approximately : (R=8JK^(-1) mol^(-1) , F= 96000 mol^(-1))

The standard electrode potential for Deniell cell is 1.1V . Calculate the standard Gibbs energy for the reaction. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq)+Cu(s)

The equilibrium constant of the reaction : Zn(s)+2Ag^(+)(aq)toZn(aq)+2Ag(s),E^(@)=1.50V at 298 K is

The equilibrium constant of the reaction; Cu(s)+2Ag + (aq)⟶Cu 2+ (aq)+2Ag(s) E o =0.46V at 298K

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V

Write the equilibrium constant expressions for the following reactions. Cu( s)+ 2Ag^(+) (aq) hArr Cu^(2+) (aq) + 2Ag(s)

Calculate the equilibrium constant for the reaction at 298K. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq) +Cu(s) Given, E_(Zn^(2+)//Zn)^(@) =- 0.76V and E_(Cu^(2+)//Cu)^(@) = +0.34 V

Calculate the equilibrium constant for the reaction at 298K. Zn(s) +Cu^(2+)(aq) hArr Zn^(2+)(aq) +Cu(s) Given, E_(Zn^(2+)//Zn)^(@) =- 0.76V and E_(Cu^(2+)//Cu)^(@) = +0.34 V

The equivalent constant of the reaction: Cu(s)+2Ag^(+)(aq.) rarr Cu^(2+)(aq.)+2Ag(s) E^(@)=0.46 V at 298 K ,is: