Home
Class 12
MATHS
If A = [{:("cos" theta, -"sin"theta),("s...

If `A = [{:("cos" theta, -"sin"theta),("sin"theta, "cos"theta):}]`, then the matrix `A^(-50) " when " theta = (pi)/(12)`, is equal to

A

`[(1/2, (sqrt(3))/2),(-(sqrt(3))/2,1/2)]`

B

`[((sqrt(3))/2,-1/2),(1/2,(sqrt(3))/2)]`

C

`[(1/2,(sqrt(3))/2),(1/2,1/2)]`

D

`[((sqrt(3))/2,1/2),(-1/2,(sqrt(3))/2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A^{-50} \) when \( A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \) and \( \theta = \frac{\pi}{12} \). ### Step-by-step Solution: 1. **Define the Matrix A**: \[ A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] 2. **Find the Inverse of A**: The inverse of a rotation matrix \( A \) is given by: \[ A^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] Since \( A \) is an orthogonal matrix, we have \( A^{-1} = A^T \). 3. **Calculate \( A^{-50} \)**: We know that: \[ A^{-n} = A^{-1} \cdot A^{-1} \cdots A^{-1} \quad (n \text{ times}) \] Therefore: \[ A^{-50} = (A^{-1})^{50} \] 4. **Express \( A^{-n} \)**: From the properties of rotation matrices, we have: \[ A^{-n} = \begin{pmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{pmatrix} \] Thus: \[ A^{-50} = \begin{pmatrix} \cos(50\theta) & \sin(50\theta) \\ -\sin(50\theta) & \cos(50\theta) \end{pmatrix} \] 5. **Substitute \( \theta = \frac{\pi}{12} \)**: We need to calculate \( 50\theta \): \[ 50\theta = 50 \cdot \frac{\pi}{12} = \frac{50\pi}{12} = \frac{25\pi}{6} \] 6. **Find \( \cos\left(\frac{25\pi}{6}\right) \) and \( \sin\left(\frac{25\pi}{6}\right) \)**: To simplify \( \frac{25\pi}{6} \): \[ \frac{25\pi}{6} = 4\pi + \frac{\pi}{6} \quad \text{(since } 4\pi = \frac{24\pi}{6}\text{)} \] Thus: \[ \cos\left(\frac{25\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] \[ \sin\left(\frac{25\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] 7. **Write the Final Matrix**: Now substituting back into our expression for \( A^{-50} \): \[ A^{-50} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Final Answer: \[ A^{-50} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \]

To solve the problem, we need to find the matrix \( A^{-50} \) when \( A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \) and \( \theta = \frac{\pi}{12} \). ### Step-by-step Solution: 1. **Define the Matrix A**: \[ A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

  • REVISION TEST-15 JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

if A=[{:(costheta,sin theta ),(-sin theta,costheta):}] , then show that : A^(2)=[{:(cos2theta,sin2theta),(-sin2theta,cos2theta):}]

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

Show that the matrix [{:( cos theta , sin theta ),(-sin theta , cos theta ):}] is orthogonal

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Prove that ("sin"theta-2"sin"^(3)theta)/(2"cos"^(3)theta-"cos"theta)="tan"theta

Prove that : (sin^(2)theta)/(cos theta)+cos theta=sec theta

VMC MODULES ENGLISH-REVISION TEST-2 JEE-MATHEMATICS
  1. If the Boolean expression (po+q)^^(~psquareq) is equivalent to p^^q ...

    Text Solution

    |

  2. The equation of the line passing through (-4, 3, 1), parallel to the p...

    Text Solution

    |

  3. if cos^(-1)((2)/(3x))+cos^(-1)((3)/(4x))=(pi)/2, x>3/4 then x= (a...

    Text Solution

    |

  4. Consider a class of 5 girls and 7 boys. The number of different teams ...

    Text Solution

    |

  5. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  6. Equation of a common tangent to the circle x^(2)+y^(2)-6x=0 and the pa...

    Text Solution

    |

  7. For any theta epsilon((pi)/4,(pi)/2) the expression 3(sin theta-cos th...

    Text Solution

    |

  8. If A = [{:("cos" theta, -"sin"theta),("sin"theta, "cos"theta):}], then...

    Text Solution

    |

  9. Average height & variance of 5 students in a class is 150 and 18 respe...

    Text Solution

    |

  10. Consider the set of all lines px+qy+r=0 such that 3p+2q+4r=0. Which on...

    Text Solution

    |

  11. The area (in sq. units) bounded by the parabola y=x^2-1, the tangent a...

    Text Solution

    |

  12. Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is pu...

    Text Solution

    |

  13. If eccentricity of the hyperbola (x^(2))/(cos^(2) theta)-(y^(2))/(sin^...

    Text Solution

    |

  14. Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that ...

    Text Solution

    |

  15. For xinR-{10,1}, " let " f1(x)=1/x,f2(x)=1-x" and "f(3)(x)=1/(1-x) be ...

    Text Solution

    |

  16. If y = y(x) is the solution of the differential equation, x dy/dx+2y=x...

    Text Solution

    |

  17. if theta denotes the acute angle between the curves, y = 10-x^2" and "...

    Text Solution

    |

  18. Let alpha and beta be two roots of the equation x^(2) + 2x + 2 = 0. Th...

    Text Solution

    |

  19. The maximum valume (in cu.m) of the right circluar cone having slant h...

    Text Solution

    |

  20. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |