Home
Class 12
MATHS
Let veca=hati-hatj,vecb=hati+hatj+hatk a...

Let `veca=hati-hatj,vecb=hati+hatj+hatk` and `vecc` be a vector such that `vecaxxvecc+vecb=vec0` and `veca.vecc=4`, then `|vecc|^(2)` is equal to:

A

9

B

8

C

`17/2`

D

`19/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and use vector algebra. ### Step 1: Define the vectors Let: \[ \vec{a} = \hat{i} - \hat{j} \] \[ \vec{b} = \hat{i} + \hat{j} + \hat{k} \] Let \(\vec{c} = x \hat{i} + y \hat{j} + z \hat{k}\). ### Step 2: Use the cross product condition We are given that: \[ \vec{a} \times \vec{c} + \vec{b} = \vec{0} \] This implies: \[ \vec{a} \times \vec{c} = -\vec{b} \] ### Step 3: Calculate the cross product \(\vec{a} \times \vec{c}\) Using the determinant form for the cross product: \[ \vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 0 \\ x & y & z \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 0 \\ y & z \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 0 \\ x & z \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ x & y \end{vmatrix} \] \[ = \hat{i} (-1 \cdot z - 0 \cdot y) - \hat{j} (1 \cdot z - 0 \cdot x) + \hat{k} (1 \cdot y - (-1) \cdot x) \] \[ = -z \hat{i} - z \hat{j} + (y + x) \hat{k} \] ### Step 4: Set the cross product equal to \(-\vec{b}\) Setting \(\vec{a} \times \vec{c} = -\vec{b}\): \[ -z \hat{i} - z \hat{j} + (y + x) \hat{k} = -(\hat{i} + \hat{j} + \hat{k}) \] This gives us the following equations: 1. \(-z = -1 \implies z = 1\) 2. \(-z = -1 \implies z = 1\) 3. \(y + x = -1\) ### Step 5: Use the dot product condition We are also given: \[ \vec{a} \cdot \vec{c} = 4 \] Calculating the dot product: \[ \vec{a} \cdot \vec{c} = (1)(x) + (-1)(y) + (0)(z) = x - y = 4 \] ### Step 6: Solve the system of equations Now we have two equations: 1. \(x + y = -1\) (from the cross product) 2. \(x - y = 4\) (from the dot product) Adding these two equations: \[ (x + y) + (x - y) = -1 + 4 \implies 2x = 3 \implies x = \frac{3}{2} \] Substituting \(x\) back into the first equation: \[ \frac{3}{2} + y = -1 \implies y = -1 - \frac{3}{2} = -\frac{5}{2} \] ### Step 7: Find \(|\vec{c}|^2\) Now we have: \[ x = \frac{3}{2}, \quad y = -\frac{5}{2}, \quad z = 1 \] The magnitude squared of \(\vec{c}\) is: \[ |\vec{c}|^2 = x^2 + y^2 + z^2 = \left(\frac{3}{2}\right)^2 + \left(-\frac{5}{2}\right)^2 + 1^2 \] \[ = \frac{9}{4} + \frac{25}{4} + 1 = \frac{9}{4} + \frac{25}{4} + \frac{4}{4} = \frac{38}{4} = \frac{19}{2} \] ### Final Answer Thus, \(|\vec{c}|^2 = \frac{19}{2}\). ---

To solve the problem step by step, we will follow the given conditions and use vector algebra. ### Step 1: Define the vectors Let: \[ \vec{a} = \hat{i} - \hat{j} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • REVISION TEST-15 JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • SEQUENCE AND SERIES

    VMC MODULES ENGLISH|Exercise JEE MAIN & Advance ( ARCHIVE)|46 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca=2hati+2hatj+hatk and vecc is a vector such that |vecaxxvecc|^(2)+(veca.vecc)^(2)=144 then |vecc| is equal to

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+hatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

Let veca=2hati-hatj+3hatk, vecb=hati+hatj-4hatk and non - zero vector vecc are such that (veca xx vecb)xx vecc =veca xx(vecb xx vecc) , then vector vecc may be

Let veca =hatj-hatk and vecc =hati-hatj-hatk . Then the vector b satisfying veca xvecb+vecc =0 and veca.vecb = 3, is

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

if veca=hati-hatj-3hatk, vecb=4hati-3hatj+hatk and vecc=2hati+hatj+2hatk, verify that vecaxx(vecb+vecc)=vecaxxvecb+vecaxxvecc

VMC MODULES ENGLISH-REVISION TEST-2 JEE-MATHEMATICS
  1. If the Boolean expression (po+q)^^(~psquareq) is equivalent to p^^q ...

    Text Solution

    |

  2. The equation of the line passing through (-4, 3, 1), parallel to the p...

    Text Solution

    |

  3. if cos^(-1)((2)/(3x))+cos^(-1)((3)/(4x))=(pi)/2, x>3/4 then x= (a...

    Text Solution

    |

  4. Consider a class of 5 girls and 7 boys. The number of different teams ...

    Text Solution

    |

  5. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  6. Equation of a common tangent to the circle x^(2)+y^(2)-6x=0 and the pa...

    Text Solution

    |

  7. For any theta epsilon((pi)/4,(pi)/2) the expression 3(sin theta-cos th...

    Text Solution

    |

  8. If A = [{:("cos" theta, -"sin"theta),("sin"theta, "cos"theta):}], then...

    Text Solution

    |

  9. Average height & variance of 5 students in a class is 150 and 18 respe...

    Text Solution

    |

  10. Consider the set of all lines px+qy+r=0 such that 3p+2q+4r=0. Which on...

    Text Solution

    |

  11. The area (in sq. units) bounded by the parabola y=x^2-1, the tangent a...

    Text Solution

    |

  12. Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is pu...

    Text Solution

    |

  13. If eccentricity of the hyperbola (x^(2))/(cos^(2) theta)-(y^(2))/(sin^...

    Text Solution

    |

  14. Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that ...

    Text Solution

    |

  15. For xinR-{10,1}, " let " f1(x)=1/x,f2(x)=1-x" and "f(3)(x)=1/(1-x) be ...

    Text Solution

    |

  16. If y = y(x) is the solution of the differential equation, x dy/dx+2y=x...

    Text Solution

    |

  17. if theta denotes the acute angle between the curves, y = 10-x^2" and "...

    Text Solution

    |

  18. Let alpha and beta be two roots of the equation x^(2) + 2x + 2 = 0. Th...

    Text Solution

    |

  19. The maximum valume (in cu.m) of the right circluar cone having slant h...

    Text Solution

    |

  20. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |