Home
Class 12
PHYSICS
Two vectors vec A and vecB have equal ma...

Two vectors `vec A and vecB` have equal magnitudes.If magnitude of `(vecA+vecB)` is equal to n times of the magnitude of `(vecA-vecB)` then the angle between `vecA and vecB` is :-

A

`sin^(-1)[(n-1)/(n+1)]`

B

`sin^(-1)[(n^(2)-1)/(n^(2)+1)]`

C

`cos^(-1)[(n-1)/(n+1)]`

D

`cos^(-1)[(n^(2)-1)/(n^(2)+1)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between two vectors \(\vec{A}\) and \(\vec{B}\) given that they have equal magnitudes and that the magnitude of \((\vec{A} + \vec{B})\) is equal to \(n\) times the magnitude of \((\vec{A} - \vec{B})\). ### Step-by-Step Solution: 1. **Set Up the Problem:** Let the magnitude of both vectors be \(A\) (i.e., \(|\vec{A}| = |\vec{B}| = A\)). We are given: \[ |\vec{A} + \vec{B}| = n \cdot |\vec{A} - \vec{B}| \] 2. **Square Both Sides:** To eliminate the square root, we square both sides: \[ |\vec{A} + \vec{B}|^2 = n^2 \cdot |\vec{A} - \vec{B}|^2 \] 3. **Expand Both Sides:** Using the formula for the square of the magnitude of a vector sum: \[ |\vec{A} + \vec{B}|^2 = |\vec{A}|^2 + |\vec{B}|^2 + 2 \vec{A} \cdot \vec{B} \] \[ |\vec{A} - \vec{B}|^2 = |\vec{A}|^2 + |\vec{B}|^2 - 2 \vec{A} \cdot \vec{B} \] Since \(|\vec{A}| = |\vec{B}| = A\), we have: \[ |\vec{A} + \vec{B}|^2 = A^2 + A^2 + 2 \vec{A} \cdot \vec{B} = 2A^2 + 2 \vec{A} \cdot \vec{B} \] \[ |\vec{A} - \vec{B}|^2 = A^2 + A^2 - 2 \vec{A} \cdot \vec{B} = 2A^2 - 2 \vec{A} \cdot \vec{B} \] 4. **Substitute Back:** Substitute these into the squared equation: \[ 2A^2 + 2 \vec{A} \cdot \vec{B} = n^2 (2A^2 - 2 \vec{A} \cdot \vec{B}) \] 5. **Rearranging the Equation:** Rearranging gives: \[ 2A^2 + 2 \vec{A} \cdot \vec{B} = 2n^2 A^2 - 2n^2 \vec{A} \cdot \vec{B} \] \[ 2 \vec{A} \cdot \vec{B} + 2n^2 \vec{A} \cdot \vec{B} = 2n^2 A^2 - 2A^2 \] \[ (2 + 2n^2) \vec{A} \cdot \vec{B} = 2(n^2 - 1)A^2 \] 6. **Solving for \(\vec{A} \cdot \vec{B}\):** Dividing both sides by 2: \[ (1 + n^2) \vec{A} \cdot \vec{B} = (n^2 - 1)A^2 \] \[ \vec{A} \cdot \vec{B} = \frac{(n^2 - 1)A^2}{(1 + n^2)} \] 7. **Using the Dot Product Relation:** Recall that \(\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta = A^2 \cos \theta\): \[ A^2 \cos \theta = \frac{(n^2 - 1)A^2}{(1 + n^2)} \] 8. **Solving for \(\cos \theta\):** Dividing both sides by \(A^2\) (assuming \(A \neq 0\)): \[ \cos \theta = \frac{n^2 - 1}{1 + n^2} \] 9. **Finding the Angle \(\theta\):** Therefore, the angle \(\theta\) between the vectors is: \[ \theta = \cos^{-1} \left( \frac{n^2 - 1}{n^2 + 1} \right) \] ### Final Answer: The angle between \(\vec{A}\) and \(\vec{B}\) is: \[ \theta = \cos^{-1} \left( \frac{n^2 - 1}{n^2 + 1} \right) \]

To solve the problem, we need to find the angle between two vectors \(\vec{A}\) and \(\vec{B}\) given that they have equal magnitudes and that the magnitude of \((\vec{A} + \vec{B})\) is equal to \(n\) times the magnitude of \((\vec{A} - \vec{B})\). ### Step-by-Step Solution: 1. **Set Up the Problem:** Let the magnitude of both vectors be \(A\) (i.e., \(|\vec{A}| = |\vec{B}| = A\)). We are given: \[ |\vec{A} + \vec{B}| = n \cdot |\vec{A} - \vec{B}| ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST-3 (2020)

    VMC MODULES ENGLISH|Exercise PHYSICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST-3

    VMC MODULES ENGLISH|Exercise PHYSICS (SECTION 1)|3 Videos
  • JEE Main Revision Test-6 | JEE-2020

    VMC MODULES ENGLISH|Exercise PHYSICS|2 Videos

Similar Questions

Explore conceptually related problems

If |vecA xx vecB| = vecA.vecB then the angle between vecA and vecB is :

The maximum value of magnitude of (vecA-vecB) is

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

The resultant of two vectors vecA and vecB is perpendicular to the vector vecA and its magnitude is equal to half of the magnitude of the vector vecB . Find out the angles between vecA and vecB . .

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

The magnitudes of vectors vecA,vecB and vecC are 3,4 and 5 units respectively. If vecA+vecB= vecC , the angle between vecA and vecB is

A magnitude of vector vecA,vecB and vecC are respectively 12, 5 and 13 units and vecA+vecB=vecC then the angle between vecA and vecB is

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be