Home
Class 12
CHEMISTRY
For the reaction of H(2) with I(2), the ...

For the reaction of `H_(2)` with `I_(2)`, the constant is `2.5 xx 10^(-4) dm^(3) mol^(-1)s^(-1)` at `327^(@)C` and `1.0 dm^(3) mol^(-1) s^(-1)` at `527^(@)C`. The activation energy for the reaction is `1.65 xx 10x J//"mole"`. The numerical value of x is __________. `(R = 8314JK^(-1) mol^(-1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the Arrhenius equation, which relates the rate constants of a reaction at two different temperatures to the activation energy. The equation is given by: \[ \log \left( \frac{k_2}{k_1} \right) = \frac{E_a}{2.303 R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \] ### Step 1: Identify the given values - \( k_1 = 2.5 \times 10^{-4} \, \text{dm}^3 \, \text{mol}^{-1} \, \text{s}^{-1} \) at \( T_1 = 327^\circ C = 600 \, K \) - \( k_2 = 1.0 \, \text{dm}^3 \, \text{mol}^{-1} \, \text{s}^{-1} \) at \( T_2 = 527^\circ C = 800 \, K \) - Activation energy \( E_a = 1.65 \times 10^x \, \text{J/mol} \) - Gas constant \( R = 8314 \, \text{J/(K mol)} \) ### Step 2: Substitute the values into the Arrhenius equation Substituting the known values into the equation, we have: \[ \log \left( \frac{1.0}{2.5 \times 10^{-4}} \right) = \frac{1.65 \times 10^x}{2.303 \times 8314} \left( \frac{1}{600} - \frac{1}{800} \right) \] ### Step 3: Calculate \( \frac{1}{600} - \frac{1}{800} \) Calculating the difference: \[ \frac{1}{600} - \frac{1}{800} = \frac{4 - 3}{2400} = \frac{1}{2400} \] ### Step 4: Calculate \( \log \left( \frac{1.0}{2.5 \times 10^{-4}} \right) \) Calculating the logarithm: \[ \log \left( \frac{1.0}{2.5 \times 10^{-4}} \right) = \log(4000) = \log(4 \times 10^3) = \log(4) + 3 \approx 0.602 + 3 = 3.602 \] ### Step 5: Substitute back into the equation Now substituting back into the equation: \[ 3.602 = \frac{1.65 \times 10^x}{2.303 \times 8314} \times \frac{1}{2400} \] ### Step 6: Solve for \( E_a \) Calculating the denominator: \[ 2.303 \times 8314 \approx 19116.662 \] Now rearranging the equation to solve for \( E_a \): \[ E_a = 3.602 \times 19116.662 \times 2400 \] Calculating this gives: \[ E_a \approx 16500 \, \text{J/mol} \] ### Step 7: Relate \( E_a \) to \( 1.65 \times 10^x \) We know \( E_a = 1.65 \times 10^x \), so we set: \[ 1.65 \times 10^x = 16500 \] ### Step 8: Solve for \( x \) Dividing both sides by 1.65: \[ 10^x = \frac{16500}{1.65} \approx 10000 \] This simplifies to: \[ 10^x = 10^4 \] Thus, \( x = 4 \). ### Final Answer The numerical value of \( x \) is: \[ \boxed{4} \]

To solve the problem, we will use the Arrhenius equation, which relates the rate constants of a reaction at two different temperatures to the activation energy. The equation is given by: \[ \log \left( \frac{k_2}{k_1} \right) = \frac{E_a}{2.303 R} \left( \frac{1}{T_1} - \frac{1}{T_2} \right) \] ### Step 1: Identify the given values - \( k_1 = 2.5 \times 10^{-4} \, \text{dm}^3 \, \text{mol}^{-1} \, \text{s}^{-1} \) at \( T_1 = 327^\circ C = 600 \, K \) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 13

    VMC MODULES ENGLISH|Exercise CHEMISTRY (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 12

    VMC MODULES ENGLISH|Exercise CHEMISTRY|25 Videos
  • JEE MAIN REVISION TEST - 18

    VMC MODULES ENGLISH|Exercise CHEMISTRY - SECTION 2|5 Videos

Similar Questions

Explore conceptually related problems

The rate constant of a reaction is 1.5 xx 10^(7)s^(-1) at 50^(@) C and 4.5 xx 10^(7)s^(-1) at 100^(@) C. Calculate the value of activation energy for the reaction (R=8.314 J K^(-1)mol^(-1))

The rate constant of a reaction is 1.2 xx10^(-3) s^(-1) at 30^@C and 2.1xx10^(-3)s^(-1) at 40^@C . Calculate the energy of activation of the reaction.

Rate constant k = 1.2 xx 10^(3) mol^(-1) L s^(-1) and E_(a) = 2.0 xx 10^(2) kJ mol^(-1) . When T rarr oo :

The kinetic energy of two moles of N_(2) at 27^(@) C is (R = 8.314 J K^(-1) mol^(-1))

Identify the order of the reaction from the rate constant value = 3.2 xx 10^(-5) L mol^(-1) s^(-1) .

Identify the reaction order from each of the following rate : k=2.3 xx 10^5 L mol^(-1) s^(-1)