A gaseous mixture consists of 16 g of helium and 16 g of oxygen. Find `gamma` for the mixture.
A
`23/29`
B
`47/23`
C
`29/23`
D
`47/29`
Text Solution
AI Generated Solution
The correct Answer is:
To find the value of gamma (γ) for a gaseous mixture consisting of 16 g of helium and 16 g of oxygen, we can follow these steps:
### Step 1: Calculate the number of moles of each gas
- **For Helium (He)**:
- Molar mass of Helium = 4 g/mol
- Number of moles of Helium (n₁) = mass / molar mass = 16 g / 4 g/mol = 4 moles
- **For Oxygen (O₂)**:
- Molar mass of Oxygen = 32 g/mol
- Number of moles of Oxygen (n₂) = mass / molar mass = 16 g / 32 g/mol = 0.5 moles
### Step 2: Determine the degrees of freedom for each gas
- **For Helium** (monoatomic gas):
- Degrees of freedom (f₁) = 3
- **For Oxygen** (diatomic gas):
- Degrees of freedom (f₂) = 5
### Step 3: Calculate the equivalent degrees of freedom for the mixture
Using the formula for the equivalent degrees of freedom (f_equivalent):
\[
f_{equivalent} = \frac{n₁ f₁ + n₂ f₂}{n₁ + n₂}
\]
Substituting the values:
\[
f_{equivalent} = \frac{(4 \text{ moles} \times 3) + (0.5 \text{ moles} \times 5)}{4 + 0.5}
\]
Calculating the numerator:
\[
= \frac{12 + 2.5}{4.5} = \frac{14.5}{4.5}
\]
Now simplifying:
\[
= \frac{29}{9}
\]
### Step 4: Calculate gamma (γ) for the mixture
The formula for gamma is:
\[
\gamma = 1 + \frac{2}{f_{equivalent}}
\]
Substituting the value of f_equivalent:
\[
\gamma = 1 + \frac{2}{\frac{29}{9}} = 1 + \frac{2 \times 9}{29} = 1 + \frac{18}{29}
\]
Now, converting 1 to a fraction:
\[
= \frac{29}{29} + \frac{18}{29} = \frac{47}{29}
\]
### Final Answer
Thus, the value of gamma (γ) for the mixture is:
\[
\gamma = \frac{47}{29}
\]
To find the value of gamma (γ) for a gaseous mixture consisting of 16 g of helium and 16 g of oxygen, we can follow these steps:
### Step 1: Calculate the number of moles of each gas
- **For Helium (He)**:
- Molar mass of Helium = 4 g/mol
- Number of moles of Helium (n₁) = mass / molar mass = 16 g / 4 g/mol = 4 moles
- **For Oxygen (O₂)**:
...
A gaseous mixture consists of 16g of helium and 16 g of oxygen. The ratio (C_p)/(C_v) of the mixture is
A gaseous mixture consists of 16g of helium and 16 g of oxygen. The ratio (C_p)/(C_v) of the mixture is
Bordeaux mixture consists of lime and
A gaseous mixture consists of 16 g of O_2 and 16 g of He at temperature T. Neglecting the vibrational modes, total internal energy of the system is
How much heat energy should be added to the gaseous mixture consisting of 1 g of hydrogen and 1g of helium to raise it s temperature from 0^(@)C to 100^(@)C (a) at constant volume, b. at constant pressure (R = 2 cal//mol K) ?
A gaseous mixture contains 220 g of carbon dioxide and 280 g of nitrogen gas. If the partial pressure of nitrogen gas in the mixture is 1.5 atm then the partial pressure of carbon dioxide gas in the mixture will be
Find the speed of sound in a mixture of 1 mole of helium and 2 moles of oxygen at 27^(@)C . If the temperature is raised by 1K from 300K, find the percentage change in the speed of sound in the gaseous mixture. Take R=8.31Jmo l e^(-1)K^(-1) .
The value of gamma=C_p/C_v for a gaseous mixture consisting of 2.0 moles of oxygen and 3.0 moles of helium. The gases are assumed to be ideal.
Calculate gamma of a gaseous mixture consisting of 3 moles of nitrogen and 2 moles of carbon dioxide.
A gaseous mixture contains 56 g of N_2 , 44 g CO_2 and 16 g of CH_4 The total pressure of the mixture is 720 mm Hg. The partial pressure of CH_4 is
VMC MODULES ENGLISH-JEE MAIN REVISON TEST-23-PHYSICS (SECTION 2)