Home
Class 12
PHYSICS
The period of oscillation of a simple pe...

The period of oscillation of a simple pendulum is `T = 2 pi sqrt((L)/(g)) .L` is about `10 cm` and is known to `1mm` accuracy . The period of oscillation is about `0.5 s`. The time of 100 oscillation is measured with a wrist watch of `1 s` resolution . What is the accuracy in the determination of `g` ?

A

0.02

B

0.03

C

0.04

D

0.05

Text Solution

Verified by Experts

The correct Answer is:
D

The accuracy in determination of g is found in terms of minimum percentage error in calculation. The percentage error in g = `(triangle g)/(g) xx 100%`. Where `(Delta g)/(g)` is the relative error in determination of g .
`T = 2pi sqrt(L/(g)) or T^(2) = 2pi^(2) sqrt(L/g) or g = (4pi^(2)L)/(T^(2))`,
Now , `(Delta g)/(g) = (Delta L)/(L) + 2 xx (Delta T)/(T)`
In terms of percentage ,
`(Delta g)/(g) xx 100 = (Delta L)/(L) xx 100 + 2 xx (Delta T)/(T) xx 100 ,
Percentage error in L `100 xx (Delta L)/(L) = 100 xx (0.1)/(10) = 1%`
Percentage error in T = `100 xx (Delta T)/(T) = 100 xx (1)/(50) = 2%`
Thus percentage error in g
`= 100 xx (Delta g)/(g) = 1% + 2 xx 2% = 5%`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise PHYSICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 25 | JEE - 2020

    VMC MODULES ENGLISH|Exercise PHYSICS|25 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise PHYSICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The time period of a pendulum is given by T = 2 pi sqrt((L)/(g)) . The length of pendulum is 20 cm and is measured up to 1 mm accuracy. The time period is about 0.6 s . The time of 100 oscillations is measured with a watch of 1//10 s resolution. What is the accuracy in the determination of g ?

The period of oscillation of a simple pendulum is given by T=2pisqrt((l)/(g)) where l is about 100 cm and is known to have 1 mm accuracy. The period is about 2 s. The time of 100 oscillation is measrued by a stop watch of least count 0.1 s. The percentage error is g is

The period of oscillation of a simple pendulum is given by T=2pisqrt((l)/(g)) where l is about 100 cm and is known to have 1 mm accuracy. The period is about 2 s. The time of 100 oscillation is measrued by a stop watch of least count 0.1 s. The percentage error is g is

The period of oscillation of a simple pendulum is T = 2pisqrt(L//g) . Measured value of L is 20.0 cm known to 1mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. What is the accuracy in the determination of g?

The period of oscillation of a simple pendulum is T = 2pisqrt(L//g) . Measured value of L is 20.0 cm known to 1mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. What is the accuracy in the determination of g?

The period of oscillation of a simple pendulum is T = 2pisqrt(L//g) . Measured value of L is 20.0 cm known to 1mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. What is the accuracy in the determination of g?

The length of a simple pendulum is about 100 cm known to have an accuracy of 1mm. Its period of oscillation is 2 s determined by measuring the time for 100 oscillations using a clock of 0.1s resolution. What is the accuracy in the determined value of g?

The time period of a simple pendulum is given by T = 2 pi sqrt(L//g) , where L is length and g acceleration due to gravity. Measured value of length is 10 cm known to 1 mm accuracy and time for 50 oscillations of the pendulum is 80 s using a wrist watch of 1 s resloution. What is the accuracy in the determination of g ?

The length of a pendulum is measured as 20.0 cm. The time interval for 100 oscillations is measured as 90 s with a stop watch of 1 s resolution. Find the approximate percentage change in g.

The period of oscillation of a simple pendulum is given by T = 2pisqrt((L)/(g)) , where L is the length of the pendulum and g is the acceleration due to gravity. The length is measured using a meter scale which has 500 divisions. If the measured value L is 50 cm, the accuracy in the determination of g is 1.1% and the time taken for 100 oscillations is 100 seconds, what should be the possible error in measurement of the clock in one minute (in milliseconds) ?