Home
Class 12
MATHS
Let I(1) = int(0)^(pi/4)x^(2008)(tanx )^...

Let `I_(1) = int_(0)^(pi/4)x^(2008)(tanx )^(2008)dx, I_(2) = int_(0)^(pi/4) x ^(2009)(tan x)^(2009)dx , I_(3) = int_(0)^(pi/4) x^(2010)(tanx)^(2010)dx` then which one of the following inequalities hold good?

A

`I_(2)lt I_(3) lt I_(1)`

B

`I_(1) lt I_(2) lt I_(3)`

C

`I_(3) lt I_(1) lt I_(2)`

D

`I_(3) lt I_(2) lt I_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the integrals \( I_1 \), \( I_2 \), and \( I_3 \) defined as follows: \[ I_1 = \int_{0}^{\frac{\pi}{4}} x^{2008} (\tan x)^{2008} \, dx \] \[ I_2 = \int_{0}^{\frac{\pi}{4}} x^{2009} (\tan x)^{2009} \, dx \] \[ I_3 = \int_{0}^{\frac{\pi}{4}} x^{2010} (\tan x)^{2010} \, dx \] ### Step 1: Analyze the behavior of \( \tan x \) For \( x \) in the interval \( [0, \frac{\pi}{4}] \): - \( \tan x \) is a continuous and increasing function. - At \( x = 0 \), \( \tan 0 = 0 \). - At \( x = \frac{\pi}{4} \), \( \tan \frac{\pi}{4} = 1 \). Thus, \( 0 \leq \tan x < 1 \) for \( x \in [0, \frac{\pi}{4}) \). ### Step 2: Compare the powers of \( x \) and \( \tan x \) Since \( \tan x < 1 \) in the interval \( [0, \frac{\pi}{4}) \), we can analyze the behavior of the integrands: - For \( x^{2008} (\tan x)^{2008} \), since both \( x \) and \( \tan x \) are raised to positive powers, we have: \[ x^{2008} (\tan x)^{2008} < x^{2009} (\tan x)^{2009} < x^{2010} (\tan x)^{2010} \] because \( x < x^{2009} < x^{2010} \) and \( \tan x < 1 \). ### Step 3: Integrate the inequalities Using the property of integrals, we can integrate the inequalities over the interval \( [0, \frac{\pi}{4}] \): \[ \int_{0}^{\frac{\pi}{4}} x^{2008} (\tan x)^{2008} \, dx < \int_{0}^{\frac{\pi}{4}} x^{2009} (\tan x)^{2009} \, dx < \int_{0}^{\frac{\pi}{4}} x^{2010} (\tan x)^{2010} \, dx \] This gives us the relationships: \[ I_1 < I_2 < I_3 \] ### Conclusion Thus, the correct inequality is: \[ I_3 < I_2 < I_1 \]

To solve the problem, we need to analyze the integrals \( I_1 \), \( I_2 \), and \( I_3 \) defined as follows: \[ I_1 = \int_{0}^{\frac{\pi}{4}} x^{2008} (\tan x)^{2008} \, dx \] \[ I_2 = \int_{0}^{\frac{\pi}{4}} x^{2009} (\tan x)^{2009} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 25 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^( pi/4)tan^(3)dx

int_(0)^(pi/4) sin 2x dx

int_(0)^(pi//4) cos^(2) x dx

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

8. int_0^(pi/4) log(1+tanx)dx

int_(0)^( pi/4)(dx)/(1+sin x)

int_(0)^( pi/4)(dx)/(1-sin x)

int_(0)^(pi//4) sin ^(2) x dx

int_(0)^(pi//2)(dx)/(1+tanx) is

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx