Home
Class 12
MATHS
The value of lim(xto0)(1)/(x) int(0)^(x)...

The value of `lim_(xto0)(1)/(x) int_(0)^(x)(1+ sin 2t)^(1/t) dt` equals :

A

2

B

1

C

e

D

`e^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{1}{x} \int_{0}^{x} (1 + \sin 2t)^{\frac{1}{t}} dt, \] we will follow these steps: ### Step 1: Identify the limit form As \( x \to 0 \), the integral from \( 0 \) to \( x \) approaches \( 0 \), and thus the entire expression becomes \( \frac{0}{0} \). This indicates we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule We need to differentiate the numerator and the denominator. The denominator is simply \( x \), which differentiates to \( 1 \). For the numerator, we apply the Leibniz rule for differentiation under the integral sign: \[ \frac{d}{dx} \int_{0}^{x} (1 + \sin 2t)^{\frac{1}{t}} dt = (1 + \sin 2x)^{\frac{1}{x}} \cdot \frac{d}{dx}(x) - 0 = (1 + \sin 2x)^{\frac{1}{x}}. \] Thus, we have: \[ \lim_{x \to 0} \frac{(1 + \sin 2x)^{\frac{1}{x}}}{1}. \] ### Step 3: Evaluate the limit Now we need to evaluate \[ \lim_{x \to 0} (1 + \sin 2x)^{\frac{1}{x}}. \] As \( x \to 0 \), \( \sin 2x \to 0 \), leading to the form \( 1^{\infty} \). To resolve this, we take the natural logarithm: \[ \log y = \lim_{x \to 0} \frac{1}{x} \log(1 + \sin 2x). \] ### Step 4: Apply L'Hôpital's Rule again This expression is again in the \( \frac{0}{0} \) form, so we apply L'Hôpital's Rule again: \[ \log y = \lim_{x \to 0} \frac{\log(1 + \sin 2x)}{x}. \] Differentiating the numerator and denominator gives: \[ \frac{d}{dx} \log(1 + \sin 2x) = \frac{2 \cos 2x}{1 + \sin 2x}, \] and the denominator differentiates to \( 1 \). Thus, we have: \[ \log y = \lim_{x \to 0} \frac{2 \cos 2x}{1 + \sin 2x}. \] ### Step 5: Evaluate the limit Now substituting \( x = 0 \): \[ \log y = \frac{2 \cdot \cos 0}{1 + \sin 0} = \frac{2 \cdot 1}{1 + 0} = 2. \] ### Step 6: Solve for \( y \) Exponentiating both sides gives: \[ y = e^2. \] ### Final Answer Thus, the value of the limit is \[ \lim_{x \to 0} \frac{1}{x} \int_{0}^{x} (1 + \sin 2t)^{\frac{1}{t}} dt = e^2. \]

To solve the limit \[ \lim_{x \to 0} \frac{1}{x} \int_{0}^{x} (1 + \sin 2t)^{\frac{1}{t}} dt, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 25 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If a, b and c are real numbers, then the value of lim_(trarr0) ((1)/(t)int_(0)^(t)(1+asinbx)^(c//x)dx) equals

The value of lim_(xto0)(1/(x^(2))-cotx) is

The value of lim_(xrarr0)(1)/(x^(3)) int_(0)^(x)(tln(1+t))/(t^(4)+4) dt

The value of lim_(xto1^(+))(int_(1)^(x)|t-1|dt)/(sin(x-1)) is:

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0) (1-cos2x)/x^(2)

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

Find the value of lim_(xto0^(+)) (sinx)^((1)/(x)) .

The value of lim_(xrarr0) (int_(0)^(x^2)sec^2t dt)/(x sin x) dx , is

The value of lim_(x->0) cosec^4 x int_0^(x^2) (ln(1 +4t))/(t^2+1) dt is