Home
Class 12
MATHS
If A = {:[(1, 2), (3,4)]:} , then 2A^(-1...

If A = `{:[(1, 2), (3,4)]:}` , then `2A^(-1)` =

A

3I - A

B

5 I - A

C

A - 5I

D

3A + I

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 2A^{-1} \) given the matrix \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Find the Characteristic Polynomial**: We start by finding the characteristic polynomial of the matrix \( A \). The characteristic polynomial is given by the determinant of \( A - \lambda I \), where \( I \) is the identity matrix. \[ A - \lambda I = \begin{pmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{pmatrix} \] The determinant is calculated as follows: \[ \text{det}(A - \lambda I) = (1 - \lambda)(4 - \lambda) - (2)(3) \] Expanding this: \[ = (1 - \lambda)(4 - \lambda) - 6 = 4 - 5\lambda + \lambda^2 - 6 = \lambda^2 - 5\lambda - 2 \] Thus, the characteristic polynomial is: \[ \lambda^2 - 5\lambda - 2 = 0 \] 2. **Use the Characteristic Polynomial to Find \( A^{-1} \)**: From the characteristic polynomial, we can express \( A \) in terms of \( I \): \[ A^2 - 5A - 2I = 0 \] Rearranging gives: \[ A^2 - 5A = 2I \] Now, multiplying both sides by \( A^{-1} \): \[ A - 5I = 2A^{-1} \] 3. **Solve for \( 2A^{-1} \)**: Rearranging the equation above gives: \[ 2A^{-1} = A - 5I \] 4. **Calculate \( A - 5I \)**: Now we need to compute \( A - 5I \): \[ 5I = 5 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] Therefore: \[ A - 5I = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} - \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 1 - 5 & 2 - 0 \\ 3 - 0 & 4 - 5 \end{pmatrix} = \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} \] 5. **Final Result**: Thus, we find: \[ 2A^{-1} = A - 5I = \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} \] ### Conclusion: The final answer is: \[ 2A^{-1} = \begin{pmatrix} -4 & 2 \\ 3 & -1 \end{pmatrix} \]

To solve the problem, we need to find the value of \( 2A^{-1} \) given the matrix \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \). ### Step-by-Step Solution: 1. **Find the Characteristic Polynomial**: We start by finding the characteristic polynomial of the matrix \( A \). The characteristic polynomial is given by the determinant of \( A - \lambda I \), where \( I \) is the identity matrix. \[ ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 25 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,2,1),(0,-1,-2),(-3,4,2):}] , find A^(-1)

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

Let A={:[(1,2),(3,4)]:},B={:[(-1,-2),(-4,-3)]:} , find AB and BA.

Which of the following can be the valid assignment of probability for outcomes of sample space, S = {W_(1), W_(2), W_(3)}, {" where " W_(1), W_(2) " and " W_(3) are mutually exclusive events Assignment {:(,w_(1),w_(2),w_(3)),((a),0.4,0.2,0.8),((b),0,0,1),((c),-1/2,3/4,1/2),((d),1/2,1/2,1/4):}

The rank of the matrix A={:[(1,2,3,4),(4,3,2,1)]:} , is

Let A = {1,2,3,4} and f : A to A satisfy f (1) =2, f(2)=3, f(3)=4, f (4)=1. Suppose g:A to A satisfies g (1) =3 and fog = gof , then g = (a).{(1,3), (2,1), (3,2), (4,4)} (b).{(1,3), (2,4),(3,1),(4,2)} (c).{(1,3),(2,2),(3,4),(4,3)} (d).{(1,3),(2,4),(3,2),(4,1)}

A={:[(1,2,3),(4,1,-1),(2,3,1)]:},B={:[(1,-1,1),(2,0,1),(1,1,1)]:} , verify (AB)'=B'A'.