Home
Class 12
MATHS
Value of sum(k=1)^(100)(i^(k!)+omega^(k!...

Value of `sum_(k=1)^(100)(i^(k!)+omega^(k!))`, where `i=sqrt(-1)` and `omega` is complex cube root of unity, is :

A

`190 + omega`

B

`192 + omega^(2)`

C

`190 + i`

D

192 + i

Text Solution

Verified by Experts

The correct Answer is:
D

`sum_(k =1)^(100) i^(k!) + sum_(k = 1)^(100)omega^(k!)`
`sum_(k=1)^(100)i^(k!) = i^(1!) + i^(2!) + i^(3!)+ i^(4!) + ....i^(100!)`
`= I - 1 + i^(6) + 1 + 1 + 1 +…. + 1`
= I - 2 + 97 = I + 95.
`sum_(k=1)^(100) omega^(k!) = omega^(1!) + omega^(2!) + omega^(3!) + omega^(4!) + omega^(100!)`
`= omega + omega^(2) + 1 + 1 +1 +...+ 1 = 97`
sum = i + 95 + 97 = i + 192
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 25 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The value of Sigma_(k=1)^(99)(i^(k!)+omega^(k!)) is (where, i=sqrt(-1) amd omega is non - real cube root of unity)

If omega is a cube root of unity, then 1+omega = …..

The area of the triangle (in square units) whose vertices are i , omega and omega^(2) where i=sqrt(-1) and omega, omega^(2) are complex cube roots of unity, is

If omega is a cube root of unity, then omega^(3) = ……

If omega is a cube root of unity, then 1+ omega^(2)= …..

(1)/(a + omega) + (1)/(b+omega) +(1)/(c + omega) + (1)/(d + omega) =(1)/(omega) where, a,b,c,d, in R and omega is a complex cube root of unity then find the value of sum (1)/(a^(2)-a+1)

If y_(1)=max||z-omega|-|z-omega^(2)|| , where |z|=2 and y_(2)=max||z-omega|-|z-omega^(2)|| , where |z|=(1)/(2) and omega and omega^(2) are complex cube roots of unity, then

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

If 1,x_(1),x_(2),x_(3) are the roots of x^(4)-1=0andomega is a complex cube root of unity, find the value of ((omega^(2)-x_(1))(omega^(2)-x_(2))(omega^(2)-x_(3)))/((omega-x_(1))(omega-x_(2))(omega-x_(3)))

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals