Home
Class 12
MATHS
The equation of the curves through the p...

The equation of the curves through the point (1, 0) and whose slope is `(y-1)/(x^2+x)` is (a) `( b ) (c)(( d ) (e) y-1( f ))(( g ) (h) x+1( i ))+2x=0( j )` (k) (l) `( m ) (n)2x(( o ) (p) y-1( q ))+x+1=0( r )` (s) (t) `( u ) (v) x(( w ) (x) y-1( y ))(( z ) (aa) x+1( b b ))+2=0( c c )` (dd) (ee)None of these

A

(y - 1) (x + 1) - 2x = 0

B

(y - 1) (x - 1) - 2x = 0

C

(y + 1) (x +1) - 2x = 0

D

(y + 1)(x-1)+ 2x = 0

Text Solution

Verified by Experts

The correct Answer is:
A

We have `(dy)/(dx) = (y - 1)/(x (x +1))` (Given)
`rArr int(dy)/(y - 1) = int(dx)/(x (x+1)) to ln |y - 1| = ln x - ln (x + 1) + C`
When x = 1, y = 0 , so 0 = 0 - ln 2 + C rArr C = ln 2
`rArr ""ln ((y-1)(x+1))/(2x) = 0 rArr ((y -1)(x +1))/(2x) = 1` to (y - 1) (x +1) - 2x = 0`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 25 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

Find the equation of a curve passing through (1,1) and whose slope of tangent at a point (x, y) is -(x)/(y) .

Tangent to a curve intercepts the y-axis at a point Pdot A line perpendicular to this tangent through P passes through another point (1,0). The differential equation of the curve is (a) ( b ) (c) y (d)(( e ) dy)/( f )(( g ) dx)( h ) (i)-x (j) (k)(( l ) (m) (n)(( o ) dy)/( p )(( q ) dx)( r ) (s) (t))^(( u )2( v ))( w )=1( x ) (y) (b) ( z ) (aa) (bb)(( c c ) x (dd) d^(( e e )2( f f ))( g g ))/( h h )(( i i ) d (jj) x^(( k k )2( l l ))( m m ))( n n ) (oo)+( p p ) (qq)(( r r ) (ss) (tt)(( u u ) dy)/( v v )(( w w ) dx)( x x ) (yy) (zz))^(( a a a )2( b b b ))( c c c )=0( d d d ) (eee) (c) ( d ) (e) y (f)(( g ) dx)/( h )(( i ) dy)( j ) (k)+x=1( l ) (m) (d) None of these

Tangent to a curve intercepts the y-axis at a point Pdot A line perpendicular to this tangent through P passes through another point (1,0). The differential equation of the curve is (a) ( b ) (c) y (d)(( e ) dy)/( f )(( g ) dx)( h ) (i)-x (j) (k)(( l ) (m) (n)(( o ) dy)/( p )(( q ) dx)( r ) (s) (t))^(( u )2( v ))( w )=1( x ) (y) (b) ( z ) (aa) (bb)(( c c ) x (dd) d^(( e e )2( f f ))( g g ))/( h h )(( i i ) d (jj) x^(( k k )2( l l ))( m m ))( n n ) (oo)+( p p ) (qq)(( r r ) (ss) (tt)(( u u ) dy)/( v v )(( w w ) dx)( x x ) (yy) (zz))^(( a a a )2( b b b ))( c c c )=0( d d d ) (eee) (c) ( d ) (e) y (f)(( g ) dx)/( h )(( i ) dy)( j ) (k)+x=1( l ) (m) (d) None of these

Find the equation of the curve through the point (1,0), if the slope of the tangent to the curve at any point (x,y) is (y-1)/(x^(2)+x)

The equation of a curve passing through (1,0) for which the product of the abscissa of a point P and the intercept made by a normal at P on the x-axis equal twice the square of the radius vector of the point P is (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h ) y^(( i )2( j ))( k )=( l ) x^(( m )4( n ))( o ) (p) (q) (b) ( r ) (s) (t) x^(( u )2( v ))( w )+( x ) y^(( y )2( z ))( a a )=2( b b ) x^(( c c )4( d d ))( e e ) (ff) (gg) (c) ( d ) (e) (f) x^(( g )2( h ))( i )+( j ) y^(( k )2( l ))( m )=4( n ) x^(( o )4( p ))( q ) (r) (s) (d) None of these

The solution of (x^2+x y)dy=(x^2+y^2)dx is (a) ( b ) (c)logx=log(( d ) (e) x-y (f))+( g ) y/( h ) x (i) (j)+c (k) (l) (m) ( n ) (o)logx=2log(( p ) (q) x-y (r))+( s ) y/( t ) x (u) (v)+c (w) (x) (y) ( z ) (aa)logx=log(( b b ) (cc) x-y (dd))+( e e ) x/( f f ) y (gg) (hh)+c (ii) (jj) (kk) None of these

The solution of the differential equation (x^2y^2-1)dy+2xy^3dx=0 is (a) ( b ) (c)1+( d ) x^(( e )2( f ))( g ) (h) y^(( i )2( j ))( k )=c x (l) (m) (b) ( n ) (o)1+( p ) x^(( q )2( r ))( s ) (t) y^(( u )2( v ))( w )=c y (x) (y) (c) ( d ) (e) y=0( f ) (g) (d) ( h ) (i) y=-( j )1/( k )(( l ) (m) x^(( n )2( o ))( p ))( q ) (r) (s) (t)

A curve is such that the mid-point of the portion of the tangent intercepted between the point where the tangent is drawn and the point where the tangent meets the y-axis lies on the line y=xdot If the curve passes through (1,0), then the curve is (a) ( b ) (c)2y=( d ) x^(( e )2( f ))( g )-x (h) (i) (b) ( j ) (k) y=( l ) x^(( m )2( n ))( o )-x (p) (q) (c) ( d ) (e) y=x-( f ) x^(( g )2( h ))( i ) (j) (k) (d) ( l ) (m) y=2(( n ) (o) x-( p ) x^(( q )2( r ))( s ) (t))( u ) (v)

If x(t) is a solution of ((1+t)dy)/(dx)-t y=1 and y(0)=-1 then y(1) is (a) ( b ) (c)-( d )1/( e )2( f ) (g) (h) (i) (b) ( j ) (k) e+( l )1/( m )2( n ) (o) (p) (q) (c) ( d ) (e) e-( f )1/( g )2( h ) (i) (j) (k) (d) ( l ) (m) (n)1/( o )2( p ) (q) (r) (s)

The solution of the differential equation {1+xsqrt((x^2+y^2))}dx+{sqrt((x^2+y^2))-1}ydy=0 is equal to (a) ( b ) (c) (d) x^(( e )2( f ))( g )+( h )(( i ) (j) y^(( k )2( l ))( m ))/( n )2( o ) (p)+( q )1/( r )3( s ) (t) (u) (v)(( w ) (x) (y) x^(( z )2( a a ))( b b )+( c c ) y^(( d d )2( e e ))( f f ) (gg))^(( h h ) (ii) (jj)3/( k k )2( l l ) (mm) (nn))( o o )=c (pp) (qq) (rr) ( s s ) (tt) x+( u u )(( v v ) (ww) y^(( x x )3( y y ))( z z ))/( a a a )3( b b b ) (ccc)+( d d d )1/( e e e )2( f f f ) (ggg) (hhh) (iii)(( j j j ) (kkk) (lll) x^(( m m m )2( n n n ))( o o o )+( p p p ) y^(( q q q )2( r r r ))( s s s ) (ttt))^(( u u u ) (vvv) (www)1/( x x x )2( y y y ) (zzz) (aaaa))( b b b b )=c (cccc) (dddd) (eeee) ( f f f f ) (gggg) x-( h h h h )(( i i i i ) (jjjj) y^(( k k k k )2( l l l l ))( m m m m ))/( n n n n )2( o o o o ) (pppp)+( q q q q )1/( r r r r )3( s s s s ) (tttt) (uuuu) (vvvv)(( w w w w ) (xxxx) (yyyy) x^(( z z z z )2( a a a a a ))( b b b b b )+( c c c c c ) y^(( d d d d d )2( e e e e e ))( f f f f f ) (ggggg))^(( h h h h h ) (iiiii) (jjjjj)3/( k k k k k )2( l l l l l ) (mmmmm) (nnnnn))( o o o o o )=c (ppppp) (qqqqq)