Home
Class 12
MATHS
If the value of the sum n^(2) + n - sum...

If the value of the sum `n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3)` as n tends to infinity can be expressed in the form `(p)/(q)` find the least value of (p + q) where p, q `in N`

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the limit of the expression as \( n \) tends to infinity: \[ n^2 + n - \sum_{k=1}^{n} \frac{2k^3 + 8k^2 + 6k - 1}{k^2 + 4k + 3} \] ### Step 1: Simplifying the Summation ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 25 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

The value of \lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n) equals to

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)