Home
Class 12
MATHS
Let veca = hati - 2 hatj + 2hatk and ...

Let `veca = hati - 2 hatj + 2hatk` and `vec b = 2 hati - hatj + hatk` be two vectors. If `vec c` is a vector such that `vecb xx vec c = vec b xx vec a` and `vec c vec a = 1` , then `vec c vec b` is equal to :

A

`1`

B

`-1`

C

`2`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will start by defining the vectors and using the given conditions to find the required value of \( \vec{c} \cdot \vec{b} \). ### Step 1: Define the vectors Let: \[ \vec{a} = \hat{i} - 2\hat{j} + 2\hat{k} \] \[ \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \] ### Step 2: Express vector \( \vec{c} \) Assume: \[ \vec{c} = x\hat{i} + y\hat{j} + z\hat{k} \] ### Step 3: Use the first condition \( \vec{c} \cdot \vec{a} = 1 \) Calculating the dot product: \[ \vec{c} \cdot \vec{a} = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} - 2\hat{j} + 2\hat{k}) = x - 2y + 2z = 1 \] This gives us our first equation: \[ x - 2y + 2z = 1 \quad \text{(1)} \] ### Step 4: Use the second condition \( \vec{b} \times \vec{c} = \vec{b} \times \vec{a} \) Calculate \( \vec{b} \times \vec{c} \): \[ \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \] \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ x & y & z \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-1)z - 1y) - \hat{j}(2z - 1x) + \hat{k}(2y - (-1)x) \] \[ = (-z - y)\hat{i} - (2z - x)\hat{j} + (2y + x)\hat{k} \] Now calculate \( \vec{b} \times \vec{a} \): \[ \vec{a} = \hat{i} - 2\hat{j} + 2\hat{k} \] \[ \vec{b} \times \vec{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & -2 & 2 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i}((-1)2 - 1(-2)) - \hat{j}(2(2) - 1(1)) + \hat{k}(2(-2) - (-1)(1)) \] \[ = \hat{i}(-2 + 2) - \hat{j}(4 - 1) + \hat{k}(-4 + 1) \] \[ = 0\hat{i} - 3\hat{j} - 3\hat{k} \] ### Step 5: Set the two cross products equal From \( \vec{b} \times \vec{c} = \vec{b} \times \vec{a} \): \[ (-z - y)\hat{i} - (2z - x)\hat{j} + (2y + x)\hat{k} = 0\hat{i} - 3\hat{j} - 3\hat{k} \] This gives us the following equations: 1. \(-z - y = 0 \quad \text{(2)}\) 2. \(2z - x = 3 \quad \text{(3)}\) 3. \(2y + x = -3 \quad \text{(4)}\) ### Step 6: Solve the system of equations From equation (2): \[ y = -z \] Substituting \(y = -z\) into equation (3): \[ 2z - x = 3 \implies x = 2z - 3 \quad \text{(5)} \] Substituting \(y = -z\) into equation (4): \[ 2(-z) + x = -3 \implies x - 2z = -3 \implies x = 2z - 3 \quad \text{(6)} \] Both equations (5) and (6) are consistent. ### Step 7: Substitute into equation (1) Now substitute \(y = -z\) and \(x = 2z - 3\) into equation (1): \[ (2z - 3) - 2(-z) + 2z = 1 \] \[ 2z - 3 + 2z + 2z = 1 \] \[ 6z - 3 = 1 \implies 6z = 4 \implies z = \frac{2}{3} \] ### Step 8: Find \(y\) and \(x\) Using \(z = \frac{2}{3}\): \[ y = -z = -\frac{2}{3} \] \[ x = 2z - 3 = 2 \cdot \frac{2}{3} - 3 = \frac{4}{3} - 3 = \frac{4}{3} - \frac{9}{3} = -\frac{5}{3} \] ### Step 9: Write \( \vec{c} \) Thus, \[ \vec{c} = -\frac{5}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k} \] ### Step 10: Calculate \( \vec{c} \cdot \vec{b} \) Now we calculate \( \vec{c} \cdot \vec{b} \): \[ \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \] \[ \vec{c} \cdot \vec{b} = \left(-\frac{5}{3}\hat{i} - \frac{2}{3}\hat{j} + \frac{2}{3}\hat{k}\right) \cdot (2\hat{i} - \hat{j} + \hat{k}) \] Calculating the dot product: \[ = -\frac{5}{3} \cdot 2 + -\frac{2}{3} \cdot (-1) + \frac{2}{3} \cdot 1 \] \[ = -\frac{10}{3} + \frac{2}{3} + \frac{2}{3} = -\frac{10}{3} + \frac{4}{3} = -\frac{6}{3} = -2 \] ### Final Answer Thus, \( \vec{c} \cdot \vec{b} = -2 \).

To solve the problem step by step, we will start by defining the vectors and using the given conditions to find the required value of \( \vec{c} \cdot \vec{b} \). ### Step 1: Define the vectors Let: \[ \vec{a} = \hat{i} - 2\hat{j} + 2\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

Given two vectors veca=-hati + 2hatj + 2hatk and vecb =- 2hati + hatj + 2hatk find |vec a xx vec b|

If vec a+vec b+vec c=0 , prove that (vec a xx vec b)=(vec b xx vec c)=(vec c xx vec a)

For any three vectors veca , vec b , vec c show that vecaxx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)= vec0

If vec a and vec b are unit vectors and vec c is such that vec c is such that vec c = vec c = vec a xx vec c + vec b then maximum value of [veca vec b vec c] is

Let veca=hat i-2 hat j+hat k, vecb=hat i-hat j+hat k and vec c is nonzero vector and vecb xx vec c= vec b xx vec a, vec a.vec c=0 . Find vecb.vec c .

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

If two vectors are given as veca = hati - hatj + 2hatk and vecb = hati + 2hatj+hatk , the unit vector perpendicular to both vec a and vec b is

Given : vec A = hati + hatj +hatk and vec B =-hati-hatj-hatk What is the angle between (vec A - vec B) and vec A ?

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.