Home
Class 12
MATHS
Let f:(1,3) to R be a function defined ...

Let `f:(1,3) to R` be a function defined by `f(x)=(x[x])/(1+x)` , where [x] denotes the greatest integer `le x` . Then the range of f is :

A

`(1/2,3/2)`

B

`(1/2,1)uu[4/3,oo)`

C

`(1/2,2/3)uu[4/3,3/2)`

D

`(1,4/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{x \lfloor x \rfloor}{1+x} \) defined on the interval \( (1, 3) \), we will analyze the function in two parts based on the behavior of the greatest integer function \( \lfloor x \rfloor \). ### Step 1: Split the Interval The interval \( (1, 3) \) can be split into two subintervals: 1. \( (1, 2) \) 2. \( [2, 3) \) ### Step 2: Analyze the First Interval \( (1, 2) \) In the interval \( (1, 2) \): - The greatest integer function \( \lfloor x \rfloor = 1 \) for all \( x \) in this interval. - Therefore, the function simplifies to: \[ f(x) = \frac{x \cdot 1}{1+x} = \frac{x}{1+x} \] ### Step 3: Find the Range for \( (1, 2) \) To find the range of \( f(x) = \frac{x}{1+x} \) as \( x \) varies from 1 to 2: - Calculate \( f(1) \): \[ f(1) = \frac{1}{1+1} = \frac{1}{2} \] - Calculate \( f(2) \): \[ f(2) = \frac{2}{1+2} = \frac{2}{3} \] - Since \( f(x) \) is continuous and increasing in \( (1, 2) \), the range for this interval is: \[ \left( \frac{1}{2}, \frac{2}{3} \right) \] ### Step 4: Analyze the Second Interval \( [2, 3) \) In the interval \( [2, 3) \): - The greatest integer function \( \lfloor x \rfloor = 2 \) for all \( x \) in this interval. - Therefore, the function simplifies to: \[ f(x) = \frac{x \cdot 2}{1+x} = \frac{2x}{1+x} \] ### Step 5: Find the Range for \( [2, 3) \) To find the range of \( f(x) = \frac{2x}{1+x} \) as \( x \) varies from 2 to 3: - Calculate \( f(2) \): \[ f(2) = \frac{2 \cdot 2}{1+2} = \frac{4}{3} \] - Calculate \( f(3) \) (approaching from the left): \[ f(3) = \frac{2 \cdot 3}{1+3} = \frac{6}{4} = \frac{3}{2} \] - Since \( f(x) \) is continuous and increasing in \( [2, 3) \), the range for this interval is: \[ \left[ \frac{4}{3}, \frac{3}{2} \right) \] ### Step 6: Combine the Ranges Now, we combine the ranges from both intervals: 1. From \( (1, 2) \): \( \left( \frac{1}{2}, \frac{2}{3} \right) \) 2. From \( [2, 3) \): \( \left[ \frac{4}{3}, \frac{3}{2} \right) \) ### Final Range Thus, the overall range of \( f(x) \) on the interval \( (1, 3) \) is: \[ \left( \frac{1}{2}, \frac{2}{3} \right) \cup \left[ \frac{4}{3}, \frac{3}{2} \right) \]

To find the range of the function \( f(x) = \frac{x \lfloor x \rfloor}{1+x} \) defined on the interval \( (1, 3) \), we will analyze the function in two parts based on the behavior of the greatest integer function \( \lfloor x \rfloor \). ### Step 1: Split the Interval The interval \( (1, 3) \) can be split into two subintervals: 1. \( (1, 2) \) 2. \( [2, 3) \) ### Step 2: Analyze the First Interval \( (1, 2) \) ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

The function of f:R to R , defined by f(x)=[x] , where [x] denotes the greatest integer less than or equal to x, is

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f : R -> R is defined by f(x) = [2x] - 2[x] for x in R , where [x] is the greatest integer not exceeding x, then the range of f is

Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to