Home
Class 12
MATHS
If A = {:((1,-1),(1,2)):}and I={:((1,0),...

If `A = {:((1,-1),(1,2)):}`and `I={:((1,0),(0,1)):}` then `3A^(-1)` is equal to :

A

`3I-A`

B

`4I-A`

C

`6I-A`

D

`A - 6I`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( 3A^{-1} \) given the matrix \( A = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \). ### Step 1: Find the inverse of matrix \( A \) The formula for the inverse of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): - \( a = 1 \) - \( b = -1 \) - \( c = 1 \) - \( d = 2 \) First, we calculate the determinant \( |A| = ad - bc \): \[ |A| = (1)(2) - (-1)(1) = 2 + 1 = 3 \] Now, we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} \] ### Step 2: Calculate \( 3A^{-1} \) Now we multiply \( A^{-1} \) by 3: \[ 3A^{-1} = 3 \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 3 \cdot \frac{2}{3} & 3 \cdot \frac{1}{3} \\ 3 \cdot -\frac{1}{3} & 3 \cdot \frac{1}{3} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \] ### Step 3: Express \( 3A^{-1} \) in terms of the identity matrix \( I \) The identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] We can express \( 3A^{-1} \) in terms of \( I \) and \( A \): We know that: \[ 3I - A = 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 - 1 & 0 - (-1) \\ 0 - 1 & 3 - 2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \] Thus, we have: \[ 3A^{-1} = 3I - A \] ### Final Answer Therefore, the final answer is: \[ 3A^{-1} = 3I - A \]

To solve the problem, we need to find \( 3A^{-1} \) given the matrix \( A = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix} \). ### Step 1: Find the inverse of matrix \( A \) The formula for the inverse of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 26 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION-2)|5 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(4,1),(3,2):}] and I=[{:(1,0),(0,1):}] then A^(2)-6A is equal to : a) 3I b) -5I c) 5I d) none of these

If A=[{:(0,1),(1,0):}] then A^(2) is equal to

If A = [(1,0),(1/2,1)] , then A^100 is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}] ,find A^2-5A+7I .

If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}) , then what is A equal to ?

If (A -2I)(A-3I)=0 , when A=[{:(4,2),(-1,x):}] and I=[{:(1,0),(0,1):}] , find the value of x