Home
Class 12
MATHS
If int(e^(x)(1+100x^(99)-x^(200)))/((1-x...

If `int(e^(x)(1+100x^(99)-x^(200)))/((1-x^(100))sqrt(1-x^(200)))dx=e^(x)((1-x^(k))/(1+x^(l)))^(m)+c`, then

A

`k = 100, n=1`

B

`l=99, m=(1)/(2)`

C

`k=99, m=1`

D

`k=100, m=-(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integral problem, we will break it down step by step. ### Step 1: Understand the Integral We are given the integral: \[ I = \int \frac{e^x (1 + 100x^{99} - x^{200})}{(1 - x^{100}) \sqrt{1 - x^{200}}} \, dx \] and we need to express it in the form: \[ e^x \left( \frac{1 - x^k}{1 + x^l} \right)^m + C \] where we need to find the values of \(k\) and \(m\). ### Step 2: Rearranging the Numerator We can rearrange the numerator: \[ 1 + 100x^{99} - x^{200} = (1 - x^{200}) + 100x^{99} \] Thus, we can rewrite the integral as: \[ I = \int \frac{e^x \left( (1 - x^{200}) + 100x^{99} \right)}{(1 - x^{100}) \sqrt{1 - x^{200}}} \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ I = \int \frac{e^x (1 - x^{200})}{(1 - x^{100}) \sqrt{1 - x^{200}}} \, dx + \int \frac{100 e^x x^{99}}{(1 - x^{100}) \sqrt{1 - x^{200}}} \, dx \] ### Step 4: Simplifying the First Integral For the first integral: \[ \int \frac{e^x (1 - x^{200})}{(1 - x^{100}) \sqrt{1 - x^{200}}} \, dx \] we can use the identity \(1 - x^{200} = (1 - x^{100})(1 + x^{100})\): \[ = \int \frac{e^x (1 - x^{100})(1 + x^{100})}{(1 - x^{100}) \sqrt{1 - x^{200}}} \, dx \] This simplifies to: \[ = \int \frac{e^x (1 + x^{100})}{\sqrt{1 - x^{200}}} \, dx \] ### Step 5: Finding the Derivative Let: \[ f(x) = \frac{1 + x^{100}}{\sqrt{1 - x^{200}}} \] We need to find the derivative \(f'(x)\) using the quotient rule. ### Step 6: Applying the Quotient Rule Using the quotient rule: \[ f'(x) = \frac{(100x^{99})\sqrt{1 - x^{200}} - (1 + x^{100}) \cdot \frac{-200x^{199}}{2\sqrt{1 - x^{200}}}}{1 - x^{200}} \] This simplifies to: \[ f'(x) = \frac{100x^{99}\sqrt{1 - x^{200}} + 100x^{199}(1 + x^{100})}{(1 - x^{200})\sqrt{1 - x^{200}}} \] ### Step 7: Integral Evaluation Now, we can express the integral \(I\) in terms of \(f(x)\): \[ I = e^x f(x) + C \] ### Step 8: Expressing in Required Form We need to express \(f(x)\) in the form \(\frac{1 - x^k}{1 + x^l}\): \[ f(x) = \frac{1 + x^{100}}{\sqrt{1 - x^{200}}} = e^x \left( \frac{1 - x^{100}}{1 + x^{100}} \right)^{-1/2} \] From this, we can identify: - \(k = 100\) - \(m = -\frac{1}{2}\) ### Final Answer Thus, the values of \(k\) and \(m\) are: \[ k = 100, \quad m = -\frac{1}{2} \]

To solve the given integral problem, we will break it down step by step. ### Step 1: Understand the Integral We are given the integral: \[ I = \int \frac{e^x (1 + 100x^{99} - x^{200})}{(1 - x^{100}) \sqrt{1 - x^{200}}} \, dx \] and we need to express it in the form: ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION-2)|5 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 29 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If int(e^(x)(2-x^(2)))/((1-x)sqrt(1-x^(2)))dx=mu e^(x)((1+x)/(1-x))^(lambda)+C , then 2(lambda+mu) is equal to ..... .

∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

Evaluate: int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

Evaluate: int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

int(1+x-x^(- 1))e^(x+x^(-1))dx=

int_((e^x(2-x^2))/((1-x)sqrt(1-x^2))\ dx) is equal to

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then

int(1+x-x^(- 1))e^(x+x^(- 1))dx=

int ((1-x)/(1+x^(2)))^(2) e^(x)dx

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int(e^x(2-x^2))/((1-x)sqrt(1-x^2))dx (A) e^xsqrt((1-x)/(1+x))+C (B) e^xsqrt((1+x)/(1-x))+C (C) e^xsqrt((2-x)/(2+x))+C (D) none of these