Home
Class 12
MATHS
If q(1), (2), q(3) are roots of the eq...

If `q_(1), _(2), q_(3)` are roots of the equation `x^(3)+64=0`, then the value of `|(q_(1),q_(2),q_(3)),(q_(2),q_(3), q_(1)),(q_(3),q_(1),q_(2))|` is :-

A

1

B

4

C

16

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant: \[ D = \begin{vmatrix} q_1 & q_2 & q_3 \\ q_2 & q_3 & q_1 \\ q_3 & q_1 & q_2 \end{vmatrix} \] where \( q_1, q_2, q_3 \) are the roots of the equation \( x^3 + 64 = 0 \). ### Step 1: Find the roots of the equation The equation can be rewritten as: \[ x^3 = -64 \] Taking the cube root of both sides, we find: \[ x = \sqrt[3]{-64} = -4 \] The roots of the equation are \( q_1 = -4 \), \( q_2 = -4 \), and \( q_3 = -4 \). ### Step 2: Substitute the roots into the determinant Now substitute \( q_1, q_2, q_3 \) into the determinant: \[ D = \begin{vmatrix} -4 & -4 & -4 \\ -4 & -4 & -4 \\ -4 & -4 & -4 \end{vmatrix} \] ### Step 3: Calculate the determinant Since all rows of the determinant are identical, the value of the determinant is: \[ D = 0 \] ### Conclusion Thus, the value of the determinant is: \[ \boxed{0} \]

To solve the problem, we need to find the value of the determinant: \[ D = \begin{vmatrix} q_1 & q_2 & q_3 \\ q_2 & q_3 & q_1 \\ q_3 & q_1 & q_2 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION-2)|5 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 29 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If q_(1),q_(2),q_(3) ar rootsof the equation x^(3)+64=0 then value of |{:(q_(1),q_(2),q_(3)),(q_(2),q_(3),q_(1)),(q_(3),q_(1),q_(2)):}|

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

If -1 and 3 are the roots of x^(2)+px+q=0 , find the values of p and q.

Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,2beta be the roots of the equation x^(2)-qx+r=0 , then the value of r is (1) (2)/(9)(p-q)(2q-p) (2) (2)/(9)(q-p)(2p-q) (3) (2)/(9)(q-2p)(2q-p) (4) (2)/(9)(2p-q)(2q-p)

If p and q are the roots of the equation x^2-p x+q=0 , then (a) p=1,\ q=-2 (b) p=1,\ q=0 (c) p=-2,\ q=0 (d) p=-2,\ q=1

If each pair of the three equations x^(2) - p_(1)x + q_(1) =0, x^(2) -p_(2)c + q_(2)=0, x^(2)-p_(3)x + q_(3)=0 have common root, prove that, p_(1)^(2)+ p_(2)^(2) + p_(3)^(2) + 4(q_(1)+q_(2)+q_(3)) =2(p_(2)p_(3) + p_(3)p_(1) + p_(1)p_(2))

If Q_(1) = 20, Q_(3) = 48 , then coefficient of quartile deviation is :

The roots of the equation (q-r)x^2+(r-p)x+p-q=0 are (A) (r-p)/(q-r),1 (B) (p-q)/(q-r),1 (C) (q-r)/(p-q),1 (D) (r-p)/(p-q),1

The vertices of a triangle are (p q ,1/(p q)),(p q)),(q r ,1/(q r)), and (r q ,1/(r p)), where p ,q and r are the roots of the equation y^3-3y^2+6y+1=0 . The coordinates of its centroid are (1,2) (b) (2,-1) (c) (1,-1) (d) (2,3)

The value of p and q(p!=0,q!=0) for which p ,q are the roots of the equation x^2+p x+q=0 are (a) p=1,q=-2 (b) p=-1,q=-2 (c) p=-1,q=2 (d) p=1,q=2