Home
Class 12
MATHS
If f:[1, oo) rarr [1, oo) is defined as ...

If `f:[1, oo) rarr [1, oo)` is defined as `f(x) = 3^(x(x-2))` then `f^(-1)(x)` is equal to

A

(a)`1+sqrt(1+log_(3)x)`

B

(b)`1-sqrt(1+log_(3)x)`

C

(c)`1+sqrt(1-log_(3)x)`

D

(d)Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse function \( f^{-1}(x) \) for the function \( f(x) = 3^{x(x-2)} \), we will follow these steps: ### Step 1: Set up the equation We start with the equation for the function: \[ y = f(x) = 3^{x(x-2)} \] We want to express \( x \) in terms of \( y \). ### Step 2: Take the logarithm To solve for \( x \), we take the logarithm of both sides: \[ \log_3(y) = x(x-2) \] This simplifies to: \[ x^2 - 2x - \log_3(y) = 0 \] ### Step 3: Use the quadratic formula Now we can use the quadratic formula to solve for \( x \): \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = -2 \), and \( c = -\log_3(y) \). Plugging these values into the formula gives: \[ x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-\log_3(y))}}{2 \cdot 1} \] This simplifies to: \[ x = \frac{2 \pm \sqrt{4 + 4\log_3(y)}}{2} \] \[ x = 1 \pm \sqrt{1 + \log_3(y)} \] ### Step 4: Determine the correct root Since \( f(x) \) is defined from \( [1, \infty) \) to \( [1, \infty) \), we need to take the positive root to ensure \( x \) remains in the valid range: \[ x = 1 + \sqrt{1 + \log_3(y)} \] ### Step 5: Write the inverse function Thus, we have: \[ f^{-1}(y) = 1 + \sqrt{1 + \log_3(y)} \] ### Final Answer The inverse function is: \[ f^{-1}(x) = 1 + \sqrt{1 + \log_3(x)} \]

To find the inverse function \( f^{-1}(x) \) for the function \( f(x) = 3^{x(x-2)} \), we will follow these steps: ### Step 1: Set up the equation We start with the equation for the function: \[ y = f(x) = 3^{x(x-2)} \] We want to express \( x \) in terms of \( y \). ...
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION-2)|5 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 29 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

Let f : [-1, -1/2] rarr [-1, 1] is defined by f(x)=4x^(3)-3x , then f^(-1) (x) is

If f : [0, oo) rarr [0, oo) and f(x) = (x^(2))/(1+x^(4)) , then f is

Let f : (0, oo) rarr [9, oo) defined as f(x) = x^(12) + (4)/(x^(2)) + (4)/(x) . Check whether f is onto or not.

If f : [0, oo) rarr [2, oo) be defined by f(x) = x^(2) + 2, AA xx in R . Then find f^(-1) .

Statement-1 : If f : [-3, 3] rarr R is defined as f(x) = [(x^(2))/(a)] , then f(x) = 0, AA x in D_(f) , iff a in (9, oo) . ([x] denotes the greatest integer function) and Statement - 2: [x] = 0, AA 0 le x lt 1 .

Statement-1 : Let f : [1, oo) rarr [1, oo) be a function such that f(x) = x^(x) then the function is an invertible function. Statement-2 : The bijective functions are always invertible .

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

f : [0, oo) rArr [0, oo), f(x) = (5x)/(5+x) is

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals