Home
Class 12
MATHS
If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1...

If `f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x)))` where `x in (0, 1/2)` , then `f'(x)` has the value equal to

A

`(2)/(sqrt(x(1-x)))`

B

Zero

C

`-(2)/(sqrt(x(1-x)))`

D

`pi`

Text Solution

Verified by Experts

The correct Answer is:
B

`f(x)` simplifies to `pi`
`rArr" "f'(x)=0`
or `" "`directly differentiale `f(x)` to get zone
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 28

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION-2)|5 Videos
  • JEE MAIN REVISION TEST - 27 - JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS (SECTION 2)|5 Videos
  • JEE MAIN REVISION TEST - 29 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

(sin^(-1)x)/(sqrt(1-x^(2))

If f(x)=tan^(-1)sqrt(x^(2)+4x) +sin^(-1)sqrt(x^(2)+4x+1)

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

If f(x)=(a+sqrt(a^2-x^2)+x)/(sqrt(a^2-x^2)+a-x) where a>0 then f'(0) has the value equal to

Find tan^(-1)x/(sqrt(a^2-x^2)) in terms of sin^(-1) where x in (0, a)dot

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

If sin^-1x + sin^-1(1-x) = sin^-1sqrt[1-x^2] ,then x is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to