Home
Class 12
MATHS
If the roots of a1x^(2)+b1x+c1=0 and al...

If the roots of `a_1x^(2)+b_1x+c_1=0 and alpha_1 , beta_1` and those of ` a_2x^(2)+b_2x+c_2=0` are ` alpha_2 , beta_2` such that `alpha_1alpha_2=beta_1beta_2=1` then :

A

`(a_1)/(a_2)=(b_1)/(b_2)=(c_1)/(c_2)`

B

`(a_1)/(c_2)=(b_1)/(b_2)=(c_1)/(a_2)`

C

`a_1a_2=b_1b_2=c_1c_2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the relationships between the coefficients of the two quadratic equations based on the given conditions about their roots. ### Step-by-Step Solution: 1. **Identify the equations and roots**: We have two quadratic equations: - \( a_1x^2 + b_1x + c_1 = 0 \) with roots \( \alpha_1, \beta_1 \) - \( a_2x^2 + b_2x + c_2 = 0 \) with roots \( \alpha_2, \beta_2 \) 2. **Use Vieta's formulas**: According to Vieta's formulas: - For the first equation: - Sum of roots: \( \alpha_1 + \beta_1 = -\frac{b_1}{a_1} \) - Product of roots: \( \alpha_1 \beta_1 = \frac{c_1}{a_1} \) - For the second equation: - Sum of roots: \( \alpha_2 + \beta_2 = -\frac{b_2}{a_2} \) - Product of roots: \( \alpha_2 \beta_2 = \frac{c_2}{a_2} \) 3. **Apply the given conditions**: We are given that: - \( \alpha_1 \alpha_2 = 1 \) - \( \beta_1 \beta_2 = 1 \) From these, we can express \( \alpha_1 \) and \( \beta_1 \) in terms of \( \alpha_2 \) and \( \beta_2 \): - \( \alpha_1 = \frac{1}{\alpha_2} \) - \( \beta_1 = \frac{1}{\beta_2} \) 4. **Substitute into the sum of roots**: Substitute \( \alpha_1 \) and \( \beta_1 \) into the sum of roots equation: \[ \frac{1}{\alpha_2} + \frac{1}{\beta_2} = -\frac{b_1}{a_1} \] This can be rewritten as: \[ \frac{\beta_2 + \alpha_2}{\alpha_2 \beta_2} = -\frac{b_1}{a_1} \] 5. **Substitute the sum and product of roots**: Substitute \( \alpha_2 + \beta_2 \) and \( \alpha_2 \beta_2 \) using Vieta's formulas: \[ \frac{-\frac{b_2}{a_2}}{\frac{c_2}{a_2}} = -\frac{b_1}{a_1} \] Simplifying gives: \[ \frac{b_2}{c_2} = \frac{b_1}{a_1} \] 6. **Repeat for product of roots**: Substitute \( \alpha_1 \) and \( \beta_1 \) into the product of roots equation: \[ \frac{1}{\alpha_2} \cdot \frac{1}{\beta_2} = \frac{c_1}{a_1} \] This can be rewritten as: \[ \frac{1}{\alpha_2 \beta_2} = \frac{c_1}{a_1} \] Substitute \( \alpha_2 \beta_2 = \frac{c_2}{a_2} \): \[ \frac{a_2}{c_2} = \frac{c_1}{a_1} \] 7. **Combine the results**: From the two results, we have: \[ \frac{b_2}{b_1} = \frac{c_2}{a_1} = \frac{a_2}{c_1} \] This gives us the final relationship as: \[ \frac{b_2}{b_1} = \frac{c_2}{a_1} = \frac{a_2}{c_1} \] ### Final Answer: Thus, the correct relation is: \[ \frac{b_2}{b_1} = \frac{c_2}{a_1} = \frac{a_2}{c_1} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical value type of JEE Main|15 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main ( Archive )|20 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advance ( Archive )|20 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

If the roots of a_1x^2 + b_1x+ c_1 = 0 are alpha_1 ,beta_ 1 and those of a_2x^2+b_2x+c_2=0 are alpha_2,beta_2 such that alpha_1alpha_2=beta_1beta_2=1 then

If w , w^(2) are the roots of x^(2)+x+1=0 and alpha, beta are the roots of x^(2)+px+q=0 then (w alpha+w^(2)beta)(w^(2)alpha+w beta) =

If alpha , beta are the roots of ax^2+bx +c=0 then (1+ alpha + alpha ^2)(1+ beta + beta ^2) is

If alpha , beta are the roots of x^2-p(x+1)+c=0 then (1+alpha )( 1+ beta )=

If alpha, beta and 1 are the roots of x^3-2x^2-5x+6=0 , then find alpha and beta

If alpha , beta are the roots of x^2 +x+1=0 then alpha beta + beta alpha =

If alpha , beta ,1 are roots of x^3 -2x^2 -5x +6=0 ( alpha gt 1) then 3 alpha + beta=

If alpha, beta are the roots of x^(2)+x+1=0 , then alpha^(-2)+beta^(-2) is

If alpha_1,alpha_2 are the roots of equation x ^2-p x+1=0a n dbeta_1,beta_2 are those of equation x^2-q x+1=0 and vector alpha_1 hat i+beta_1 hat j is parallel to alpha_2 hat i+beta_2 hat j , then p= a. +-q b. p=+-2q c. p=2q d. none of these

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

VMC MODULES ENGLISH-QUADRATIC EQUATIONS & INEQUATIONS -LEVEL -2
  1. If alpha and beta(alpha lt beta) are the roots of the equation x^(2)+b...

    Text Solution

    |

  2. The number of real solutions of the equation (9//10)^x=-3+x-x^2 is

    Text Solution

    |

  3. If the roots of a1x^(2)+b1x+c1=0 and alpha1 , beta1 and those of a2...

    Text Solution

    |

  4. If b^2>4ac, then a(x^2 +4x+4)^2+b(x^2 +4x +4)+c=0 has distinct real ...

    Text Solution

    |

  5. If ( lambda^(2) + lambda - 2)x^(2)+(lambda+2)x lt 1 for all x in R ,...

    Text Solution

    |

  6. The value of k for which the equation (k-2) x^(2) + 8x + k + 4 = 0 has...

    Text Solution

    |

  7. For all x in R if mx^(2) - 9mx + 5m + 1 gt 0 , then m lies in the in...

    Text Solution

    |

  8. The quadratic equations x^2""-6x""+""a""=""0""a n d ""x^2""-c x""+""...

    Text Solution

    |

  9. If roots of ax^2+bx+c=0 are equal in magnitude but opposite in sign, t...

    Text Solution

    |

  10. If alpha ne beta but alpha^(2)= 5 alpha - 3 and beta ^(2)= 5 beta...

    Text Solution

    |

  11. lf 0 < a < b < c < d, then the quadratic equation ax^2 + ...

    Text Solution

    |

  12. If alpha,beta are the roots of the equation ax^2 + bx +c=0 such that b...

    Text Solution

    |

  13. If the roots of the equation b x^2+""c x""+""a""=""0 be imaginary, t...

    Text Solution

    |

  14. Consider the equation |x^2-2x- 3|=m .m belongs to R .If the given equa...

    Text Solution

    |

  15. Consider the equation |x^2-2x- 3|=m .m belongs to R .If the given equa...

    Text Solution

    |

  16. Consider the equation |x^(2)-2x-3|=m , m in R . If the given equatio...

    Text Solution

    |

  17. Let f (x) =ax ^(2) +bx + c,a ne 0, such the f (-1-x)=f (-1+ x) AA x in...

    Text Solution

    |

  18. Let f (x) =ax ^(2) +bx + c,a ne 0, such the f (-1-x)=f (-1+ x) AA x in...

    Text Solution

    |

  19. If alpha, beta the roots of equation (k + 1 )x ^(2) -(20k +14) x + 91...

    Text Solution

    |

  20. If alpha, beta the roots of equation (k + 1 )x ^(2) -(20k +14) x + 91...

    Text Solution

    |