Home
Class 12
MATHS
Equation 3sqrt(-2(x+3))-1=|x+3|+a has ex...

Equation `3sqrt(-2(x+3))-1=|x+3|+a` has exactly two real roots , then the maximum possible value of |[a]| is _________. { where [.] denotes the greatest integer function } .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3\sqrt{-2(x+3)} - 1 = |x+3| + a \) and find the maximum possible value of \( |[a]| \) where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Determine the domain of the square root The expression under the square root must be non-negative: \[ -2(x+3) \geq 0 \implies x + 3 \leq 0 \implies x \leq -3 \] **Hint:** The square root function is defined only for non-negative values. ### Step 2: Rewrite the equation for \( x \leq -3 \) Since \( x + 3 \) is negative for \( x \leq -3 \), we can express \( |x+3| \) as: \[ |x+3| = -(x+3) = -x - 3 \] Thus, the equation becomes: \[ 3\sqrt{-2(x+3)} - 1 = -x - 3 + a \] ### Step 3: Rearranging the equation Rearranging gives: \[ 3\sqrt{-2(x+3)} = -x - 3 + a + 1 \] \[ 3\sqrt{-2(x+3)} = -x + a - 2 \] ### Step 4: Square both sides Squaring both sides to eliminate the square root: \[ 9(-2(x+3)) = (-x + a - 2)^2 \] \[ -18(x + 3) = (-x + a - 2)^2 \] ### Step 5: Expand the right-hand side Expanding the right-hand side: \[ -18x - 54 = x^2 - 2x(a - 2) + (a - 2)^2 \] Rearranging gives: \[ x^2 + (2a - 16)x + (a^2 - 4a + 4 + 54) = 0 \] \[ x^2 + (2a - 16)x + (a^2 - 4a + 58) = 0 \] ### Step 6: Condition for exactly two real roots For the quadratic equation to have exactly two real roots, the discriminant must be greater than zero: \[ D = (2a - 16)^2 - 4(1)(a^2 - 4a + 58) > 0 \] Calculating the discriminant: \[ D = (2a - 16)^2 - 4(a^2 - 4a + 58) \] Expanding: \[ D = 4a^2 - 64a + 256 - 4a^2 + 16a - 232 > 0 \] This simplifies to: \[ -48a + 24 > 0 \implies 48a < 24 \implies a < \frac{1}{2} \] ### Step 7: Finding the maximum value of \( |[a]| \) The maximum value of \( a \) is just below \( \frac{1}{2} \). Thus, the greatest integer function of \( a \) is: \[ |[a]| = 0 \] since \( a \) can be negative but is less than \( \frac{1}{2} \). ### Final Answer The maximum possible value of \( |[a]| \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main ( Archive )|20 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main ( Archive ) (Fill in the blanks )|3 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If [x]^(2)-3[x]+2=0 where [*] denotes the greatest integer function, then

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

The value of int_(0)^(x)[t+1]^(3) dt (where, [.] denotes the greatest integer function of x) is qeual to

The equation x^2 - 2 = [sin x], where [.] denotes the greatest integer function, has

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is