Home
Class 12
MATHS
Suppose n be an integer greater than 1 ...

Suppose n be an integer greater than 1 , let `a_n=(1)/(log_n 2002 )`
Suppose `b=a_2+a_3+a_4+a_5 and c=a_(10)+a_11+a_(12)+a_(13)+a_(14)`. Then |b-c| equals __________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the values of \( b \) and \( c \) as defined in the question and then find \( |b - c| \). ### Step 1: Calculate \( b \) Given: \[ b = a_2 + a_3 + a_4 + a_5 \] where \( a_n = \frac{1}{\log_n 2002} \). Using the change of base formula for logarithms, we have: \[ a_n = \frac{1}{\log_n 2002} = \log_{2002} n \] Thus, we can rewrite \( b \) as: \[ b = \log_{2002} 2 + \log_{2002} 3 + \log_{2002} 4 + \log_{2002} 5 \] Using the property of logarithms that states \( \log_a b + \log_a c = \log_a (bc) \), we can combine these: \[ b = \log_{2002} (2 \times 3 \times 4 \times 5) \] Calculating the product: \[ 2 \times 3 = 6, \quad 6 \times 4 = 24, \quad 24 \times 5 = 120 \] Thus, \[ b = \log_{2002} 120 \] ### Step 2: Calculate \( c \) Similarly, for \( c \): \[ c = a_{10} + a_{11} + a_{12} + a_{13} + a_{14} \] Using the same transformation: \[ c = \log_{2002} 10 + \log_{2002} 11 + \log_{2002} 12 + \log_{2002} 13 + \log_{2002} 14 \] Combining these using the logarithmic property: \[ c = \log_{2002} (10 \times 11 \times 12 \times 13 \times 14) \] Calculating the product: \[ 10 \times 11 = 110, \quad 110 \times 12 = 1320, \quad 1320 \times 13 = 17160, \quad 17160 \times 14 = 240240 \] Thus, \[ c = \log_{2002} 240240 \] ### Step 3: Calculate \( |b - c| \) Now we need to find: \[ |b - c| = |\log_{2002} 120 - \log_{2002} 240240| \] Using the property of logarithms: \[ \log_a b - \log_a c = \log_a \left(\frac{b}{c}\right) \] So we have: \[ |b - c| = \left| \log_{2002} \left(\frac{120}{240240}\right) \right| \] Calculating the fraction: \[ \frac{120}{240240} = \frac{1}{2002} \] Thus: \[ |b - c| = \left| \log_{2002} \left(\frac{1}{2002}\right) \right| \] Using the property \( \log_a \left(\frac{1}{b}\right) = -\log_a b \): \[ |b - c| = \left| -\log_{2002} 2002 \right| = 1 \] ### Final Answer Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main ( Archive )|20 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Main ( Archive ) (Fill in the blanks )|3 Videos
  • QUADRATIC EQUATIONS & INEQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|64 Videos
  • PROPERTIES OF TRIANGLE

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|50 Videos
  • QUIZ

    VMC MODULES ENGLISH|Exercise MATHEMATICS|30 Videos

Similar Questions

Explore conceptually related problems

Len n be an integer greater than 1 and let a_(n)=(1)/(log_(n)1001). If b=a_(3)+a_(4)+a_(5)+a_(6)and c=_(11)+a_(12)+a_(13)+a_(14)+a_(15). Than value of (b-c) is equal to

If a_(0) = 0.4 and a_(n+1) = 2|a_(n)|-1 , then a_(5) =

If a_(n+1)=a_(n-1)+2a_(n) for n=2,3,4, . . . and a_(1)=1 and a_(2)=1 , then a_(5) =

Find the indicated terms in each of the following sequences whose nth terms are: a_n=5_n-4; a_(12) and a_(15) a_n=(3n-2)/(4n+5); a_7 and a_8 a_n=n(n-1); a_5 and a_8 a_n=(n-1)(2-n)(3+n); a_1,a_2,a_3 a_n=(-1)^nn ; a_3,a_5, a_8

If a_1, a_2, a_3,.....a_n are in H.P. and a_1 a_2+a_2 a_3+a_3 a_4+.......a_(n-1) a_n=ka_1 a_n , then k is equal to

Find the sum of first 24 terms of the A.P. a_1, a_2, a_3, , if it is know that a_1+a_5+a_(10)+a_(15)+a_(20)+a_(24)=225.

Let n be a positive integer and (1+x+x^2)^n=a_0+a_1x+ . . . . +a_(2n)x^(2n)dot Show that a_(02) -a_(12)+a_(22)+. . . +a _(2n2)=a_n

Let numbers a_(1),a_(2)…a_(16) are in AP and a_(1)+a_(4)+a_(7)+a_(10)+a_(13)+a_(16)=114 then a_(1)+a_(5)+a_(12)+a_(16) is equal to

Let a_1, a_2, a_3, ...a_(n) be an AP. then: 1 / (a_1 a_n) + 1 / (a_2 a_(n-1)) + 1 /(a_3a_(n-2))+......+ 1 /(a_(n) a_1) =

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in