Home
Class 12
MATHS
If alpha "and " beta be two distinct ...

If `alpha "and " beta ` be two distinct real numbers such that `(alpha-beta) ne 2 n pi` for any integer n satisfying the equations a cos `theta + b ` sin `theta =c` then prove that
`(i) "cos " (alpha+ beta) =(a^(2) -b^(2))/(a^(2) +b^(2)) " "(ii) "sin " (alpha + beta) = (2ab)/(a^(2)+b^(2))`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha\ &\ beta satisfy the equation, a cos2theta+b sin2theta=c then prove that : cos^2alpha+cos^2beta=(a^2+a c+b^2)/(a^2+b^2)

If alpha and beta are the solution of a cos theta + b sin theta = c , then

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are the two different roots of equations a cos theta+b sin theta=c , prove that (a) tan (alpha+beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If sin alpha + sin beta = a and cos alpha + cos beta = b, prove that : cos (alpha-beta) = 1/2 (a^2 + b^2 -2)

If alpha and beta are two different values of theta lying between 0 and 2pi which satisfy the equations 6costheta+8sin theta=9 , find the value of sin2(alpha+beta) .

If alpha , beta are two different values of theta lying between 0 and 2pi which satisfy the equation 6 cos theta + 8 sin theta=9, find the value of sin ( alpha + beta).

If alpha and beta are distinct roots of acostheta+b sintheta=c , prove that sin(alpha+beta)=(2a b)/(a^2+b^2)