Home
Class 12
MATHS
If y=(sin3x)/(sinx), x ne npi, then:...

If `y=(sin3x)/(sinx), x ne npi`, then:

A

y is always more than or equal to -1

B

y is never more than 3

C

y is always less than 3

D

y is always more than -1

Text Solution

Verified by Experts

The correct Answer is:
A, B, C
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

y=x^(sinx)+a^(sinx)

If f(x)=sin(3x)/sin x,x!=npi , then the range of values of f(x) for real values of x is

int sinx/sin(3x) dx=

If y=(sinx)^x+sin^(-1)sqrt(x) then find dy/dx .

If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,npi] , then value/values of n is/are (n in N) 5 (b) 3 (c) 4 (d) 6

If the function f(x)=(sin3x+a sin 2x+b)/(x^(3)), x ne 0 is continuous at x=0 and f(0)=K, AA K in R , then b-a is equal to

The total number of ordered pairs (x, y) satisfying |y|=cosx and y=sin^(-1)(sinx) , where x in [-2pi, 3pi] is equal to :

If x!=(npi)/2,\ n\ in I and ( cosx )^(sin ^2x-3sinx+2)=1, then find the general solution of xdot

y=e^(sin x)/sinx then (dy)/(dx)=

If y= (sinx+cosx)+(sin4x+cos4x)^(2) , then :