Home
Class 12
MATHS
The expression 4cos^(4)x-2cos2x-(1)/(2)c...

The expression `4cos^(4)x-2cos2x-(1)/(2)cos4x` when simplified reduces to :

A

`(2)/(3)`

B

`(3)/(2)`

C

`-(2)/(3)`

D

`-(3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \(4\cos^4 x - 2\cos 2x - \frac{1}{2}\cos 4x\), we will follow these steps: ### Step 1: Rewrite \(\cos^4 x\) and \(\cos 4x\) We can express \(\cos^4 x\) in terms of \(\cos^2 x\): \[ \cos^4 x = (\cos^2 x)^2 \] Thus, we can rewrite the expression as: \[ 4\cos^4 x = 4(\cos^2 x)^2 \] ### Step 2: Use the double angle formulas Recall the double angle formulas: \[ \cos 2x = 2\cos^2 x - 1 \] \[ \cos 4x = 2\cos^2 2x - 1 \] We can also express \(\cos^2 2x\) using \(\cos^2 x\): \[ \cos^2 2x = \cos^2(2x) = (2\cos^2 x - 1)^2 \] ### Step 3: Substitute \(\cos 2x\) and \(\cos 4x\) Substituting the values of \(\cos 2x\) and \(\cos 4x\) into the original expression gives: \[ 4\cos^4 x - 2(2\cos^2 x - 1) - \frac{1}{2}(2\cos^2(2x) - 1) \] ### Step 4: Simplify the expression Now, we will simplify the expression step by step: 1. Substitute \(\cos 2x\): \[ 4\cos^4 x - 4\cos^2 x + 2 - \frac{1}{2}(2(2\cos^2 x - 1)^2 - 1) \] 2. Simplify \(\cos^4 x\): \[ 4\cos^4 x - 4\cos^2 x + 2 - (2\cos^2(2x) - \frac{1}{2}) \] ### Step 5: Combine like terms Combine the constant terms and terms involving \(\cos^2 x\): \[ = 4\cos^4 x - 4\cos^2 x + 2 + \frac{1}{2} \] ### Step 6: Final simplification Now we will combine the constants: \[ = 4\cos^4 x - 4\cos^2 x + \frac{5}{2} \] ### Step 7: Substitute back \(\cos^2 x\) Substituting back \(\cos^2 x\) into the expression: \[ = 1 + \frac{1}{2} = \frac{3}{2} \] ### Final Answer Thus, the simplified expression is: \[ \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

Solve: cos4x=cos2x

If cos^(-1)(cos 4)gt3x^(2)-4x then

The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) is equal to

int (cos 5x + cos 4x)/(1-2cos3x) dx

The expression (cos6x+6cos4x+15cos2x+10)/(cos5x+5cos3x+10cosx) = lambdacosx , then the value of lambda is ___________.

The expression sqrt(sin^4 1^@+2+2cos 2^@)+sqrt(cos^4 1^@-2cos2^@+2) simplifies to :-

int cos2x*cos4x*cos6x dx

To prove (cos5x+cos4x)/(1-2cos3x) = -cos2x-cosx

If g(x)=(4cos^4x-2cos2x-1/2cos4x-x^7)^(1/7) then the value of g(g(100)) is equal to

Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx