Home
Class 12
MATHS
Solve for theta: cos2theta = (sqrt2+1)(c...

Solve for `theta`: `cos2theta = (sqrt2+1)(costheta - (1)/(sqrt2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 2\theta = (\sqrt{2} + 1)\left( \cos \theta - \frac{1}{\sqrt{2}} \right) \), we will follow these steps: ### Step 1: Use the double angle identity for cosine We know that: \[ \cos 2\theta = 2\cos^2 \theta - 1 \] So we can rewrite the equation as: \[ 2\cos^2 \theta - 1 = (\sqrt{2} + 1)\left( \cos \theta - \frac{1}{\sqrt{2}} \right) \] ### Step 2: Expand the right-hand side Now, we will expand the right-hand side: \[ (\sqrt{2} + 1)\left( \cos \theta - \frac{1}{\sqrt{2}} \right) = (\sqrt{2} + 1)\cos \theta - (\sqrt{2} + 1)\frac{1}{\sqrt{2}} \] This simplifies to: \[ (\sqrt{2} + 1)\cos \theta - (1 + \frac{1}{\sqrt{2}}) \] Thus, we have: \[ 2\cos^2 \theta - 1 = (\sqrt{2} + 1)\cos \theta - (1 + \frac{1}{\sqrt{2}}) \] ### Step 3: Rearrange the equation Rearranging gives us: \[ 2\cos^2 \theta - (\sqrt{2} + 1)\cos \theta + \left(1 + \frac{1}{\sqrt{2}} - 1\right) = 0 \] This simplifies to: \[ 2\cos^2 \theta - (\sqrt{2} + 1)\cos \theta + \frac{1}{\sqrt{2}} = 0 \] ### Step 4: Form a quadratic equation Let \( x = \cos \theta \). The equation becomes: \[ 2x^2 - (\sqrt{2} + 1)x + \frac{1}{\sqrt{2}} = 0 \] ### Step 5: Use the quadratic formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 2 \), \( b = -(\sqrt{2} + 1) \), and \( c = \frac{1}{\sqrt{2}} \). Calculating the discriminant: \[ b^2 - 4ac = (\sqrt{2} + 1)^2 - 4 \cdot 2 \cdot \frac{1}{\sqrt{2}} \] Calculating \( (\sqrt{2} + 1)^2 = 2 + 2\sqrt{2} + 1 = 3 + 2\sqrt{2} \) and \( 4 \cdot 2 \cdot \frac{1}{\sqrt{2}} = 4\sqrt{2} \): \[ b^2 - 4ac = (3 + 2\sqrt{2}) - 4\sqrt{2} = 3 - 2\sqrt{2} \] ### Step 6: Solve for \( x \) Now we can substitute back into the quadratic formula: \[ x = \frac{\sqrt{2} + 1 \pm \sqrt{3 - 2\sqrt{2}}}{4} \] ### Step 7: Find \( \theta \) After calculating \( x \), we can find \( \theta \) using: \[ \theta = \cos^{-1}(x) \] We will find the angles corresponding to the values of \( x \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

Solve : sqrt3 sin theta - cos theta = sqrt2.

Solve: cos3theta+2costheta=0

solve cos^(2)theta+cos theta=1

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

Solve sin theta+cos theta=sqrt(2) cos A .

cos theta sqrt(1-sin^(2)theta)=

If cos 2theta=(sqrt(2)+1)(cos theta-(1)/(sqrt(2))) , then the general value of theta(n in Z)

Solve: sqrt(3) cos theta+sintheta=sqrt(2)

Find the general value of theta cos theta = (1)/( sqrt2)