Home
Class 12
MATHS
The value of the expression cos^3theta+...

The value of the expression `cos^3theta+cos^3(120+theta)+cos^3(240+theta)` is;

A

`cos 3 theta`

B

`1/4 cos 3 theta`

C

`3/4 cos 3 theta`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^3 \theta + \cos^3(120^\circ + \theta) + \cos^3(240^\circ + \theta) \), we can use the identity for the sum of cubes and properties of cosine. ### Step-by-step Solution: 1. **Identify the expression**: \[ E = \cos^3 \theta + \cos^3(120^\circ + \theta) + \cos^3(240^\circ + \theta) \] 2. **Use the identity for the sum of cubes**: The identity states that if \( a + b + c = 0 \), then: \[ a^3 + b^3 + c^3 = 3abc \] Here, we will let: \[ a = \cos \theta, \quad b = \cos(120^\circ + \theta), \quad c = \cos(240^\circ + \theta) \] 3. **Check if \( a + b + c = 0 \)**: We know that: \[ \cos(120^\circ + \theta) = -\frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \] \[ \cos(240^\circ + \theta) = -\frac{1}{2} \cos \theta + \frac{\sqrt{3}}{2} \sin \theta \] Adding these: \[ \cos \theta + \left(-\frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta\right) + \left(-\frac{1}{2} \cos \theta + \frac{\sqrt{3}}{2} \sin \theta\right) = 0 \] Thus, \( a + b + c = 0 \). 4. **Apply the sum of cubes identity**: Since \( a + b + c = 0 \): \[ E = 3abc \] 5. **Calculate \( abc \)**: \[ abc = \cos \theta \cdot \cos(120^\circ + \theta) \cdot \cos(240^\circ + \theta) \] Using the product: \[ \cos(120^\circ + \theta) = -\frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta \] \[ \cos(240^\circ + \theta) = -\frac{1}{2} \cos \theta + \frac{\sqrt{3}}{2} \sin \theta \] The product simplifies to: \[ abc = \cos \theta \left(-\frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta\right) \left(-\frac{1}{2} \cos \theta + \frac{\sqrt{3}}{2} \sin \theta\right) \] This results in: \[ = \cos \theta \left(\frac{1}{4} \cos^2 \theta - \frac{3}{4} \sin^2 \theta\right) \] 6. **Final expression**: Therefore: \[ E = 3 \left(\cos \theta \left(\frac{1}{4} \cos^2 \theta - \frac{3}{4} \sin^2 \theta\right)\right) \] Simplifying gives: \[ E = \frac{3}{4} \cos \theta ( \cos^2 \theta - 3 \sin^2 \theta ) \] Using \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ E = \frac{3}{4} \cos \theta ( 4 \cos^2 \theta - 3 ) \] 7. **Conclusion**: The final value of the expression is: \[ E = \frac{3}{4} \cos 3\theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

The value of the expression cos^6theta+sin^6theta+3sin^2thetacos^2theta=

The value of the expression sin^6 theta + cos^6 theta + 3 sin^2 theta. cos^2 theta equals

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The maximum value of the expression 1/(sin^2 theta + 3 sin theta cos theta + 5cos^2 theta) is

The value of the expression ((sin3theta)/sin theta)^2-((cos3theta)/costheta)^2 when theta=7.5^@

Find the general value of theta from the equation costheta+cos2theta + cos3theta=0 .

Find the value of cos theta. cos 2theta. cos 2^(2)theta . cos 2^(3)theta"……." cos 2^(n-1) theta is

Prove that cos theta + cos (120^(@) + theta) + cos ( 120^(@)-theta) =0. Hence deduce that cos ^(3) theta + cos ^(3) ( 120^(@) + theta ) + cos^3( 120^(@)-theta) = 3/4 cos 3 theta.

Find the sum of the series 1+cos^2theta+cos^2thetacos2theta+cos^3 theta cos3theta+… to oo

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to