Home
Class 12
MATHS
If 3 tan theta tan phi=1, then (cos (th...

If 3 tan `theta tan phi=1, ` then `(cos (theta-phi))/(cos (theta+phi))` is

A

`1/2`

B

2

C

`1/3`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: **Step 1:** Given that \( 3 \tan \theta \tan \phi = 1 \). **Step 2:** We can rewrite the tangent functions in terms of sine and cosine: \[ 3 \frac{\sin \theta}{\cos \theta} \cdot \frac{\sin \phi}{\cos \phi} = 1 \] This simplifies to: \[ \frac{3 \sin \theta \sin \phi}{\cos \theta \cos \phi} = 1 \] **Step 3:** Rearranging gives us: \[ 3 \sin \theta \sin \phi = \cos \theta \cos \phi \] **Step 4:** Now, we apply the component on dividend (componendo dividendo) to the equation: If we have \( \frac{x}{y} = \frac{a}{b} \), then we can write: \[ \frac{x+y}{x-y} = \frac{a+b}{a-b} \] In our case, let: - \( x = \cos \theta \cos \phi \) - \( y = 3 \sin \theta \sin \phi \) - \( a = 1 \) - \( b = 3 \) Thus, we have: \[ \frac{\cos \theta \cos \phi + 3 \sin \theta \sin \phi}{\cos \theta \cos \phi - 3 \sin \theta \sin \phi} = \frac{1 + 3}{1 - 3} \] This simplifies to: \[ \frac{\cos \theta \cos \phi + 3 \sin \theta \sin \phi}{\cos \theta \cos \phi - 3 \sin \theta \sin \phi} = \frac{4}{-2} = -2 \] **Step 5:** Now, we recognize the expressions: - The numerator \( \cos \theta \cos \phi + 3 \sin \theta \sin \phi \) can be rewritten using the cosine addition formula: \[ \cos(\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi \] Thus, we can express: \[ \cos(\theta - \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi \] **Step 6:** The denominator can be expressed using the cosine subtraction formula: \[ \cos(\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi \] **Step 7:** Therefore, we can write: \[ \frac{\cos(\theta - \phi)}{\cos(\theta + \phi)} = -2 \] **Step 8:** Finally, we find that: \[ \frac{\cos(\theta - \phi)}{\cos(\theta + \phi)} = 2 \] Thus, the value of \( \frac{\cos(\theta - \phi)}{\cos(\theta + \phi)} \) is \( 2 \). ### Final Answer: \[ \frac{\cos(\theta - \phi)}{\cos(\theta + \phi)} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If 3 tan theta tan phi=1 , then prove that 2 cos (theta+phi)=cos (theta-phi) .

If 0 lt theta , phi lt pi and 8 cos theta cos phi cos (theta + phi)+1=0 find theta and phi

If (1+tantheta)(1+tanphi)=2 , then theta + phi =

(sin (theta+phi) -2 sintheta+ sin (theta-phi))/( cos(theta+phi) -2 costheta+ cos (theta-phi))= tan theta

If tantheta=1/(2) and tanphi=1/(3) , then the value of (theta+phi) is

" If "|{:(sin theta cos phi,,sin theta sin phi,,cos theta),(cos theta cos phi,, cos theta sin phi,,-sin theta),(-sin theta sin phi,,sin theta cos phi,,theta):}| then

If ( sin ^(3) theta)/( sin ( 2theta+ alpha )) = ( cos ^(3) theta)/( cos ( 2 theta + alpha)) and tan 2 theta = lamda tan ( 3theta + alpha) then the value of lamda is ____________.

(sin (theta + phi))/( sin theta cos phi) = cot theta tan phi +1.

Prove that cos 2 theta cos 2 phi + sin ^(2) ( theta - phi) -sin ^(2) (theta + phi) = cos ( 2 theta + 2 phi).