Home
Class 12
MATHS
cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2...

`cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta),` then `tan alpha=`

A

`tan beta`

B

`2 tan beta`

C

`sqrt2 tan beta`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 2\alpha = \frac{3 \cos 2\beta - 1}{3 - \cos 2\beta} \) and find \( \tan \alpha \), we will follow these steps: ### Step 1: Start with the given equation We have: \[ \cos 2\alpha = \frac{3 \cos 2\beta - 1}{3 - \cos 2\beta} \] ### Step 2: Apply Componendo and Dividendo Using the Componendo and Dividendo method, we can rewrite the equation as: \[ \frac{\cos 2\alpha - 1}{\cos 2\alpha + 1} = \frac{(3 \cos 2\beta - 1) - (3 - \cos 2\beta)}{(3 \cos 2\beta - 1) + (3 - \cos 2\beta)} \] ### Step 3: Simplify the right-hand side Now, simplify the numerator and denominator: - Numerator: \[ (3 \cos 2\beta - 1) - (3 - \cos 2\beta) = 4 \cos 2\beta - 4 = 4(\cos 2\beta - 1) \] - Denominator: \[ (3 \cos 2\beta - 1) + (3 - \cos 2\beta) = 2 \cos 2\beta + 2 = 2(1 + \cos 2\beta) \] So we have: \[ \frac{\cos 2\alpha - 1}{\cos 2\alpha + 1} = \frac{4(\cos 2\beta - 1)}{2(1 + \cos 2\beta)} = 2 \cdot \frac{\cos 2\beta - 1}{1 + \cos 2\beta} \] ### Step 4: Rewrite using trigonometric identities Using the identities \( 1 - \cos 2\theta = 2 \sin^2 \theta \) and \( 1 + \cos 2\theta = 2 \cos^2 \theta \), we can rewrite the equation: \[ \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha} = 2 \cdot \frac{2 \sin^2 \beta}{2 \cos^2 \beta} = \frac{2 \sin^2 \beta}{\cos^2 \beta} \] ### Step 5: Substitute the identities Thus, we have: \[ \frac{2 \sin^2 \alpha}{2 \cos^2 \alpha} = \frac{2 \sin^2 \beta}{\cos^2 \beta} \] ### Step 6: Cancel the common factors Cancel the 2's: \[ \frac{\sin^2 \alpha}{\cos^2 \alpha} = \frac{\sin^2 \beta}{\cos^2 \beta} \] ### Step 7: Relate the tangents This gives us: \[ \tan^2 \alpha = \tan^2 \beta \] ### Step 8: Find \( \tan \alpha \) Taking the square root, we find: \[ \tan \alpha = \sqrt{2} \tan \beta \] ### Conclusion Thus, the final result is: \[ \tan \alpha = \sqrt{2} \tan \beta \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

alpha and beta are acute angles and cos2alpha = (3cos2beta-1)/(3-cos2beta) then tan alpha cot beta =

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

If cos theta=(cos alpha-cos beta)/(1-cos alpha cos beta), prove that tan theta/2=+-tan alpha/2 cot beta/2.

Prove that (cos^2 alpha - cos^2 beta)/(cos^2 alpha*cos^2 beta) = tan^2 beta - tan^2 alpha

If the eccentric angles of the extremities of a focal chord of an ellipse x^2/a^2 + y^2/b^2 = 1 are alpha and beta , then (A) e = (cos alpha + cos beta)/(cos (alpha + beta)) (B) e= (sin alpha + sin beta)/(sin(alpha + beta)) (C) cos((alpha-beta)/(2)) = e cos ((alpha + beta)/(2)) (D) tan alpha/2.tan beta/2 = (e-1)/(e+1)

alpha & beta are solutions of a cos theta+b sin theta=c(cosalpha != cos beta)&(sin alpha != sin beta) Then tan((alpha+beta)/2)=?

Show that cos^(-1) ((cos alpha+cos beta)/(1+cosalpha cosbeta))=2 tan^(-1)(tan (alpha/2) tan (beta/2))

If cos theta=(cos alpha cos beta)/(1-sin alpha sin beta), prove that one value of tan (theta/2)=(tan (alpha/2)-tan (beta/2))/(1-tan (alpha/2) tan (beta/2)).