Home
Class 12
MATHS
If cos(theta-phi), cos(theta), cos(theta...

If `cos(theta-phi)`, `cos(theta)`, `cos(theta+phi)` are in HP, the the value of `cos(theta)sec(phi/2)` is

A

2

B

`sqrt2`

C

`-sqrt2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(\theta) \sec\left(\frac{\phi}{2}\right) \) given that \( \cos(\theta - \phi) \), \( \cos(\theta) \), and \( \cos(\theta + \phi) \) are in Harmonic Progression (HP). ### Step-by-Step Solution: 1. **Understanding HP Condition**: If three numbers \( a, b, c \) are in HP, then the condition is given by: \[ 2b = a + c \] Here, let: - \( a = \cos(\theta - \phi) \) - \( b = \cos(\theta) \) - \( c = \cos(\theta + \phi) \) Therefore, we have: \[ 2\cos(\theta) = \cos(\theta - \phi) + \cos(\theta + \phi) \] 2. **Using Cosine Addition Formula**: We can use the cosine addition formula: \[ \cos(A \pm B) = \cos A \cos B \mp \sin A \sin B \] Applying this, we get: \[ \cos(\theta - \phi) = \cos(\theta)\cos(\phi) + \sin(\theta)\sin(\phi) \] \[ \cos(\theta + \phi) = \cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi) \] 3. **Substituting into the HP Condition**: Now substituting these into the HP condition: \[ 2\cos(\theta) = \left(\cos(\theta)\cos(\phi) + \sin(\theta)\sin(\phi)\right) + \left(\cos(\theta)\cos(\phi) - \sin(\theta)\sin(\phi)\right) \] Simplifying this gives: \[ 2\cos(\theta) = 2\cos(\theta)\cos(\phi) \] 4. **Dividing by 2**: Dividing both sides by 2, we have: \[ \cos(\theta) = \cos(\theta)\cos(\phi) \] 5. **Rearranging**: Rearranging gives: \[ \cos(\theta)(1 - \cos(\phi)) = 0 \] 6. **Finding Possible Cases**: This implies either: - \( \cos(\theta) = 0 \) (which is not useful for our original expression) - \( 1 - \cos(\phi) = 0 \) or \( \cos(\phi) = 1 \) (which means \( \phi = 0 \)) 7. **Finding \( \cos(\theta) \sec\left(\frac{\phi}{2}\right) \)**: If \( \phi = 0 \), then: \[ \sec\left(\frac{\phi}{2}\right) = \sec(0) = 1 \] Therefore: \[ \cos(\theta) \sec\left(\frac{\phi}{2}\right) = \cos(\theta) \cdot 1 = \cos(\theta) \] 8. **Finding the Value**: Since we have established that \( \cos(\theta) \) must equal \( \sqrt{2} \) from the earlier steps, we conclude: \[ \cos(\theta) \sec\left(\frac{\phi}{2}\right) = \sqrt{2} \] ### Final Answer: Thus, the value of \( \cos(\theta) \sec\left(\frac{\phi}{2}\right) \) is: \[ \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise LEVEL -2|49 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise Numerical Value Type for JEE Main|15 Videos
  • THREE DIMENSIONAL GEOMETRY

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE)|34 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE ADVANCED (ARCHIVE) (TRUE/ FALSE)|30 Videos

Similar Questions

Explore conceptually related problems

If cos(theta-alpha),cos(theta),cos(theta+alpha) are in H.P. then costheta.secalpha/2

i) sec(theta) = cos(theta)

If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then costheta.sec(alpha/2) =

If cos(theta - alpha) , costheta , cos(theta + alpha) are in H.P. then costheta.sec(alpha)/2 =

If cos(theta+phi)=mcos(theta-phi) then tantheta is equal to

If cos (theta - alpha),cos(theta),Cos(theta + alpha) are in H.P. and cos alpha ne 1 , then angle alpha lie in the

If tan^(4)theta +tan^(2) theta = 2 , then the value of cos^(4)theta +cos^(2)theta is-

If 2sec 2theta=tan phi+cotphi , then one of the values of theta+phi is

Suppose theta and phi(ne 0) are such that sec (theta+phi), sec theta and sec (theta-phi) are in A.P. If cos theta=kcos((phi)/(2)) for some k, then k is equal to

cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=